In this study,the activity concentrations of the fallout radionuclide ^(137(Cs in 150 soil samples collected from 13 districts of Manisa Province were determined using a gamma ray spectrometer with a Na I(Tl) detector.The health risks to people resulting from external exposure were evaluated by estimating the outdoor absorbed gamma dose rate and annual effective dose rate(outdoor and indoor).The activity concentration of ^(137)Cs varied from 3.6 ± 2.0 to 124.1 ± 11.0 Bq kg^(-1),with an average value of43.3 Bq kg^(-1).The average values of the outdoor absorbed gamma dose rate and annual effective dose(outdoor plus indoor) were found to be 1.3 n Gy h^(-1),and 8.0 μSv y^(-1),(6.38 + 1.59 μSv y^(-1)),respectively.The results were compared with internationally recommended values.
2011-03-11日本福岛核电站放射性物质发生泄漏事件,本研究基于MASNUM(Laboratory of Marine Science and Numerical Modeling)海洋环流模式,建立了西北太平洋海洋放射性物质输运扩散模式,对事故释放的^(137)Cs在海洋中的输运和扩散过程进行了20a的模拟与预测。根据与观测资料的比较,验证了所建立的模式具备模拟放射性物质在海洋中的输运扩散过程的能力。结果显示:至2015年,^(137)Cs表层活度浓度已经扩散至整个中国海域,活度浓度值在0.01Bq/m^3左右;事故发生10a后,研究海域^(137)Cs表层活度浓度趋于均匀,为0.20~0.60Bq/m^3左右;20a后,^(137)Cs在海洋表层的活度浓度要小于0.15Bq/m^3。垂向扩散的结果显示:事故发生10a后,黄海海域^(137)Cs垂向分布较为均匀,东海东部陆架海域活度浓度高于西部海域,且上层海水中^(137)Cs活度浓度高于底层海水,南海北部海域^(137)Cs活度浓度高于南部海域,且略小于黄海和东海;至2030年,中国近海^(137)Cs的活度浓度的垂向分布趋于均匀,南海略高于黄海和东海;日本海^(137)Cs活度浓度主要集中在表层,最大活度浓度出现在2016年,约为0.20Bq/m^3;西北太平洋海域^(137)Cs活度浓度要高于其他4个海域;2030年以后,整个海域^(137)Cs活度浓度在水平和垂向分布均趋于均匀,均小于0.15Bq/m^3。
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137 Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen(TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137 Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2(1 Bq(i.e., one Becquerel) is equal to 1 disintegration per second(1 dps)). For each terrace, the 137 Cs inventory generally increased fromupper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137 Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces(lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatialvariation in soil erosion was similar to the "standard" water erosion model. Soil organic carbon(SOC) and TN inventories showed similar spatial patterns to the 137 Cs inventory for both toposequences investigated. However, due to the different dominant erosion
SU Zheng-anXIONG Dong-hongDENG WeiDONG Yi-fanMA JingPADMA C PoudelGURUNG B Sher