Photodissociation dynamics of DNCO+hv→D+NCO at photolysis wavelengths between 200 and 235 nm have been studied using the D-atom Rydberg tagging time-of-flight technique. Product translational energy distributions and angular distributions have been determined. Nearly statistical distribution of the product translational energy with nearly isotropic angular distribution was observed at 210-235 nm, which may come from the predissociation pathway of internal conversion from S1 to S0 state followed by decomposition on S0 surface. At shorter photolysis wavelengths, in addition to the statistical distribution, another feature with anisotropic angular distribution appears at high translational energy region, which can be attributed to direct dissociation on S1 surface. Compared with HNCO, the direct dissociation pathway for DNCO photodissociation opens at higher excitation energy. According to our assignment of the NCO internal energy distribution, dominantly bending and a little stretching excited NCO was produced via both dissociation pathways.
Shu SuZhen ChenZhi-chao ChenGuo-rong WuDong-xu DaiKai-jun YuanXue-ming Yang
The H atom production channels in the ultraviolet (UV) photochemistry of m-pyridyl radical (m-C5H4N) were investigated at excitation wavelengths from 224 nm to 248 nm by high-n Rydberg atom time-of-flight (HRTOF) technique. The photofragment yield (PFY) spectrum of the H atoms indicates a broad UV absorption feature near 234 nm. The product kinetic energy release is small; the average product kinetic energy at the wavelengths from 224 nm to 248 nm is 0.12 to 0.19 of the maximum excess energy (assuming the lowest energy product channel, H+cyanovinylacetylene). The product kinetic energy distributions are consistent with the H cyanovinylacetylene, H 3,4-pyridyne, and H 2,3-pyridyne product channels, with H cyanovinylacetylene as the main H-loss channel. The angular distributions of the H-atom products are isotropic. After the UV electronic excitation, the m-pyridyl radical undergoes internal conversion to the ground electronic state and then unimolecular dissoci-ation to the H cyanovinylacetylene, H 3,4-pyridyne, and H 2,3-pyridyne products. The dissociation mechanism of the m-pyridyl radical is similar to that of the o-pyridyl radical reported in the early study.