搜索到730984篇“ ALGORITHMS“的相关文章
Numbering and Generating Quantum Algorithms
2025年
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.
Mohamed A. El-Dosuky
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
2025年
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.
Robertas Damasevicius
关键词:INITIALIZATIONADAPTATIONSTOCHASTICITYEXPLOITATION
Algorithms are Killing Beauty Brands
2025年
The days of brands being“held hostage”by algorithms are coming to an end.Algorithms are becoming a vortex that engulfs the beauty industry.“Without investing in traffic,there are no sales;even with sales,there’s no profit.”“No one can make a single cent from Douyin—your return on investment in traffic will always be controlled at a fixed point.”By leveraging algorithms,platforms have gained the upper hand and control.
Yang Xu
关键词:INVESTMENTBRANDRETURN
人工智能算法的伦理规制研究
2025年
目前,人工智能算法已经深度嵌入人类的生产活动和日常生活的毛细血管,其自主性引致的非确定性,促使不可解释性和不可预测性成为算法伦理的难题;其在应用场景中引发的算法偏见、算法歧视和个人隐私保护等,也形成了一定的伦理风险。同时,人工智能算法的复杂性深刻挑战了传统的伦理规则体系,造成了算法的归责性难题。因此,有必要通过增进人工智能算法的确定性、推动人工智能算法的科学应用、明确人工智能算法的责任主体、构建一定的容错空间、回归人工智能算法技术本身等方面加以规制,从而推进人工智能算法的良善发展。
黄静秋邓伯军
关键词:伦理风险伦理规制
“数据结构与算法”课程教学改革
2025年
“数据结构与算法”课程旨在将现实世界的问题转化为计算机世界中的抽象数据描述。然而,该课程的理论知识较为复杂,且学生在实践环节中的参与度较低,导致其接受度不高,学习效果欠佳。在此情况下,小组合作学习(Team-BasedLearning,TBL)教学模式应运而生。该模式突破了传统以教师为主导的讲授式教学,强调学生的主动参与和合作学习,能够有效提升学生的学习积极性、参与度及整体教学质量。此外,小组合作学习模式包含丰富的实践应用经验和在线学习资源,不仅为课程提供了有力的学习支持,而且为后续相关课程的建设提供了可借鉴的应用示范,具有较高的应用价值和推广价值。
赖森锋谭俊贤符辉源周炳烨
关键词:数据结构与算法教学改革小组合作学习模式新型教学模式
面向大数据的高效计算机算法设计与实现
2025年
本文深入探讨了高效的大数据计算机算法的设计与实现。其介绍了并行计算的设计方法和负载均衡策略,解析了分治策略的基本思想及其案例应用,并讨论了抽样估计的方法选择与误差分析。其还详细阐述了数据预处理以及数据查询与挖掘的实现技术。文章通过实验验证了算法的有效性,并对实验结果进行了分析。本研究可以为处理大规模数据集提供有效的计算策略,并且对于大数据领域的研究和应用具有重要的意义。随着数据量增长,这些算法为数据科学家提供挖掘数据潜在价值的工具,促进数据驱动决策的发展。
李慧
关键词:大数据并行计算
超越“反向适应”:对待算法的一种伦理态度
2025年
算法技术的普遍化正在改变和重构生活世界。算法功能的个性化和便捷性日益增强,可以为人类行动提供具体的建议和指导,但也带来了人类“反向适应”的问题。对算法伦理问题的进一步追问发现:算法技术不断遮蔽人类的原初意愿和选择,抑制人类文化创新活力,影响社会协调发展。随着这种现象的不断加剧,人类沉浸在碎片化的现实中,逐渐形成一种不自知的“反向适应”,从而遗忘了人本该怎样的事情。人类主动接受算法技术对其加以改造和支配,迎合算法文化的生成,最终却不可避免地陷入人与人之间无法联结的社群性困境。基于此,我们倡导这样一种对待算法的伦理态度,即为了保障人的本质存在,应审思和超越“反向适应”,聚焦和谐共鸣的美好生活。
李伦刘梦迪
关键词:和谐共鸣
智能算法在生态学研究多元场景中的应用进展
2025年
生态学研究领域中对智能算法的使用呈现越来越丰富的趋势,其解决了许多重要问题。智能算法的应用已逐渐成为生态学研究的重要话题。研究以中国知网(CNKI核心)和Web of Science核心数据库中42439篇智能算法在生态学领域应用的相关学术论文为依据,借助文献计量学软件CiteSpace.6.3R1,介绍2013—2023年间国内外研究热点的发展现状和情况;根据每种智能算法在生态学优化、预测和评估研究中的作用,分类论述其实际研究过程和应用特征;分析智能算法应用的优势和当前存在的局限性;回顾智能算法对生态学研究的意义,并提出了对未来发展前景的展望。
戈晓宇翟哲然黄子玲解圆圆王海燕兰雨萌王帅清汶宣彤
关键词:生态学
连续DR次模最大化问题的理论与算法综述
2025年
收益递减(diminishing returns,DR)次模最大化问题是研究具有边际收益递减性质的函数的优化问题.在连续优化领域中,DR次模函数不仅在理论上具有深远的研究价值,而且在应用上也展现了广泛的实用意义,特别是在资源分配、广告预算优化、传感器网络和能量管理等实际应用场景中发挥了关键作用.本文主要阐述连续域上DR次模最大化问题的经典算法及其相关变形问题的算法,涵盖Frank-Wolfe型算法、双贪婪算法、随机算法和在线算法等,并回顾近年来有关连续DR次模最大化问题的主要研究进展,为进一步探索该领域的前沿问题提供了有益参考.
剧嘉琛杨瑞琪张真宁堵丁柱
关键词:非凸优化
Evaluations of Machine Learning Algorithms Using Simulation Study
2025年
1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local movements, international movements, etc. The data was collected from the World Health Organization. In this research, different variables have been used for analysis, for instance, new cases, new deaths, masks, schools, business, gatherings, domestic movement, international travel, new test, positive rate, test per case, new vaccination smoothed, new vaccine, total vaccination, and stringency index. Machine learning algorithms were used to predict and build the model, such as linear regression, K-nearest neighbours, decision trees, random forests, and support vector machines. Accuracy and Mean Square error (MSE) were used to test the model. A hyperparameter was also applied to find the optimum values of parameters. After computing the analysis, the result showed that the linear regression algorithm performs the best overall among the algorithms listed, with the highest testing accuracy and the lowest RMSE before and after hyper-tuning. The highest accuracy and lowest MSE were used for the best model, and for this data set, Linear regression got the highest accuracy, 0.98 and 0.97 and the lowest MSE, 4.79 and 4.04, respectively.
Nasrin Khatun

相关作者

廖文和
作品数:1,249被引量:3,934H指数:29
供职机构:南京理工大学
研究主题:激光 工业机器人 机器人 末端执行器 CAD
刘凯
作品数:215被引量:410H指数:10
供职机构:南京航空航天大学
研究主题:电阻抗成像 电阻抗 传感器 医学成像技术 气动人工肌肉
袁真
作品数:15被引量:43H指数:4
供职机构:合肥工业大学计算机与信息学院
研究主题:NF 正则表达式 前置放大器 低噪声 单片机
张福炎
作品数:224被引量:3,119H指数:28
供职机构:南京大学
研究主题:信息检索 INTERNET 多媒体 WWW 计算机
王琪
作品数:308被引量:604H指数:11
供职机构:江苏科技大学
研究主题:压缩式垃圾车 汽车 PVC地板 ANSYS 单片机