Invertebrate species are a natural reservoir of viral genetic diversity,and invertebrate pests are widely distributed in crop fields.However,information on viruses infecting invertebrate pests of crops is limited.In this report,we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields.We identified 296 new RNA viruses and 13 known RNA viruses.These viruses clustered within 31 families,with many highly divergent viruses constituting potentially new families and genera.Of the identified viruses,13 RNA viruses clustered within the Fiersviridae family of bacteriophages,and 48 RNA viruses clustered within families and genera of mycoviruses.We detected known rice viruses in novel invertebrate hosts at high abundances.Furthermore,some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species.Fortyfive potential insect pathogenic RNA viruses were detected in invertebrate species.Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity.Cross-species transmission of RNA viruses was detected between invertebrate hosts.Newly identified viral genomes showed extensive variation for invertebrate viral families or genera.Together,the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species,the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.
Hippo信号通路是一条在进化上保守的丝氨酸/苏氨酸激酶级联信号通路,主要参与调控器官大小、组织再生、胚胎发育和肿瘤发生。在果蝇中,经典的Hippo信号通路主要由Hippo(Hpo)、Salvador(Sav)、Warts(Wts)、MOB as tumor suppressor (Mats)、Yorkie(Yki)和Scalloped(Sd)组成。其不仅可通过Fat(Ft)和Crumbs(Crb)等上游分子进行调控,而且还能与NF-κB途径、IFN途径、ROS途径、cGAS-STING信号通路以及Wnt信号通路发生交联,共同调控天然免疫过程。海洋无脊椎动物缺乏获得性免疫,主要依靠天然免疫抵御病原体的侵害。Hippo信号通路作为与生长发育和天然免疫密切相关的信号通路,对海洋无脊椎动物的研究中有着重要的意义。目前,对于海洋无脊椎动物Hippo信号通路所知甚少,关于其在天然免疫中的研究更是寥寥无几。开展Hippo信号通路在海洋无脊椎动物天然免疫过程中功能机制的研究,将为深入了解海洋无脊椎动物的天然免疫调控提供一种新思路。本文通过对Hippo信号通路的组成、调控机制以及其在海洋无脊椎动物天然免疫中作用的研究进行综述。将为海洋无脊椎动物天然免疫研究提供有益的参考。
Arid climates are characterized by a summer drought period to which animals seem adapted.However,in some years,the drought can extend for unusually longer periods.Examining the effects of these current extreme weather events on biodiversity can help to understand the effects of climate change,as models predict an increase in drought severity.Here,we examined the effects of“unusual”extended drought on soil invertebrate prey availability and on diet composition(based on fecal contents)and diet selection of a fossorial amphisbaenian,the checkerboard worm lizard Trogonophis wiegmanni.Weather data show interannual variations in summer drought duration.The abundance and diversity of soil invertebrates in spring were high,and similar to those found in a“normal”early autumn,after some rain had ended with the summer drought.In contrast,in years with“unusual”extended drought,abundance,and diversity of soil invertebrates in early autumn were very low.Also,there were seasonal changes in amphisbaenians’diet;in autumn with drought,prey diversity,and niche breadth decreased with respect to spring and autumns after some rain had fallen.Amphisbaenians did not eat prey at random in any season,but made some changes in prey selection that may result from drought-related restrictions in prey availability.Finally,in spite that amphisbaenians showed some feeding flexibility,their body condition was lower in autumn than in spring,and much lower in autumn with drought.If extended drought became the norm in the future,amphisbaenians might suffer important negative effects for their health state.
José MartínJesús OrtegaRoberto García-RoaGonzalo Rodríguez-RuizAna Pérez-CembranosValentín Pérez-Mellado
Biological models of Alzheimer’s disease(AD):Non-human models have contributed tremendously to the understanding of AD and its underlying pathological processes.These models have aided the investigation of the genetic and environmental risk factors.They also have enabled the progression of candidate therapies into human clinical trials.Because of similarities with human brain anatomy and genetics,rodent models have been used extensively to recapitulate some aspects of AD pathology,measure AD-associated behavioral parameters and related nervous system dysfunctions(Eriksen and Janus,2007).For instance,transgenic mice overexpressing human amyloid precursor protein have furthered the development of the amyloid cascade hypothesis as a central pillar of familial AD.
Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon sink storage and extractive resource reservoirs.Despite their importance,effective ecological assessment is in its infancy compared to current conventional surveys carried out in freshwater ecosystems.The integration of environmental DNA(eDNA)analysis and traditional techniques has the potential to transform biomonitoring processes,particularly in remote and understudied saline environments.In this context,this preliminary study aims to explore the potential of eDNA coupled with conventional approaches by targeting five hypersaline lakes at Rottnest Island(Wadjemup)in Western Australia.We focused on the invertebrate community,a widely accepted key ecological indicator to assess the conservational status in rivers and lakes.The combination of metabarcoding with morphology-based taxonomic analysis described 16 taxa belonging to the orders Anostraca,Diptera,Isopoda,and Coleoptera.DNA-based diversity assessment revealed more taxa at higher taxonomic resolution than the morphology-based taxonomic analysis.However,certain taxa(i.e.,Ephydridae,Stratyiomidae,Ceratopogonidae)were only identified via net surveying.Overall,our results indicate that great potential resides in combining conventional net-based surveys with novel eDNA approaches in saline and hypersaline lakes.Indeed,urgent and effective conservational frameworks are required to contrast the enormous pressure that these ecosystems are increasingly facing.Further investigations at larger spatial temporal scales will allow consolidation of robust,reliable,and affordable biomonitoring frameworks in the underexplored world of saline wetlands.
Matthew A.CAMPBELLAlex LAININicole E.WHITEMorten E.ALLENTOFTMattia SACCÒ