Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unknown.Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations.Here,we conducted an integrated analysis using H3K27ac ChIP-seq,H3K4me3 ChIP-seq,and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs.We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages.Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity,results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3.Furthermore,1.45%of TEs overlapped with either the H3K27ac or H3K4me3 peaks,with the majority displaying tissue-specific activity.Notably,a TE subfamily(LTR4C_SS),containing binding motifs for SIX1 and SIX4,showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries.RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes,including 4688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression.Of note,1967 TE-containing transcripts were enriched in the testes.We identified a long terminal repeat(LTR),MLT1F1,acting as a testis-specific alternative promoter in SRPK2(a cell cycle-related protein kinase)in our pig dataset.This element was also conserved in humans and mice,suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns.Collectively,our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions,particularly in the reproductive organs.
Tao JiangZhi-Min ZhouZi-Qi LingQing ZhangZhong-Zi WuJia-Wen YangSi-Yu YangBin YangLu-Sheng Huang
Lariat RNA is concomitantly produced by excised intron during RNA splicing,which is usually debranched by DBR1,an RNA debranching enzyme.However,increasing evidence showed that some lariat RNA could escape debranching.Little is known about how and why these lariat RNAs could be retained.By comparing the atlas of lariat RNAs between the non-dividing cell(mature pollen)and three actively dividing tissues(young shoot apex,young seeds,and young roots),we identified hundreds to thousands of lariat RNA naturally retained in each tissue,and the incidence of lariat RNA retention is much less in shoot apex while much more in pollen.Many lariat RNAs derived from the same intron or different lariat RNAs from the same pre-m RNA could be retained in one tissue while degraded in the other tissues.By deciphering lariat RNA sequences,we identified an AG-rich(RAAAAVAAAR)motif and a UC-rich(UCUCUYUCUC)motif for pollen-specific and the other three tissues-retained lariat RNAs,respectively.Reconstitution of the pollen-specific AG-rich motif indeed enhanced lariat RNA retention in plants.Biologically,hundreds of lariat RNAs harbored mi RNA binding sites,and dual-luciferase reporter assay showed that these natural lariat RNAs had the potential to protect expression of mi RNA target genes.Collectively,our results uncover that selective retention of lariat RNA is an actively regulatory process,and provide new insights into understanding how lariat RNA metabolism may impact mi RNA activity.
Articular cartilage has a limited capacity to self-heal once damaged.Tissue-specific stem cells are a solution for cartilage regeneration;however,ex vivo expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration.Our previous report demonstrated that decellularized extracellular matrix(dECM)deposited by human synovium-derived stem cells(SDSCs),adipose-derived stem cells(ADSCs),urine-derived stem cells(UDSCs),or dermal fibroblasts(DFs)provided an ex vivo solution to rejuvenate human SDSCs in proliferation and chondrogenic potential,particularly for dECM deposited by UDSCs.To make the cell-derived dECM(C-dECM)approach applicable clinically,in this study,we evaluated ex vivo rejuvenation of rabbit infrapatellar fat pad-derived stem cells(IPFSCs),an easily accessible alternative for SDSCs,by the abovementioned C-dECMs,in vivo application for functional cartilage repair in a rabbit osteochondral defect model,and potential cellular and molecular mechanisms underlying this rejuvenation.We found that C-dECM rejuvenation promoted rabbit IPFSCs’cartilage engineering and functional regeneration in both ex vivo and in vivo models,particularly for the dECM deposited by UDSCs,which was further confirmed by proteomics data.RNA-Seq analysis indicated that both mesenchymal-epithelial transition(MET)and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs’chondrogenic capacity,which needs further investigation.
Ming PeiYixuan Amy PeiSheng ZhouElmira MikaeiliagahChristopher EricksonBenjamin GiertychHalima AkhterLei WangAmanda StewartJoshua ParentiBin WangSijin WenSotcheadt SimEric QuennevilleKirk C.HansenSteven FrischGangqing Hu