An internal solitary wave of elevation in a two-layer density stratified system of an incompressible, viscous and homogeneous fluid was studied. The run-up of a wave of elevation encountering different slopes was investigated numerically based on solving the continuity, Navier-Stokes and convective-diffusion equations within the Boussinesq approximation. The commercial software COMSOL Multiphysics was used to conduct the numerical simulations. For gradual shoals, a bolus formed that transported dense fluid up the shoal. The bolus disappeared when it reached its maximum height on the slope due to the draining of the dense fluid. Various shoal angles were simulated to detect the critical angle above which a bolus does not form. An angle of 30 or less resulted in the formation of a bolus. In addition, the simulations demonstrated that the size of the bolus induced by shallower slopes was larger and that the vertical height traveled by the bolus was insensitive to the slope of the shoal.
The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995.
Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms and respiratory decline were finally explained by the diagnosis of West Nile-encephalitis. During her admission, the isolated peaked T-waves indicated the underlying stress-induced cardiomyopathy. The absence of all other causes of hyperacute T-waves, their subsequent resolution with the resolution of infection and improvement in wall motion abnormalities, further supported the association. This case highlights the importance of considering hyperacute T-waves in an approach towards the diagnosis of WNV-encephalitis related atypical variant of stress-induced cardiomyopathy.
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L2-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
We use a broad Gaussian beam with perturbations to motivate rogue waves(RWs)in a two-dimensional optical-induced lattice.In a linear situation,we fail to observe RWs.Nevertheless,under a nonlinear condition,the probability of RWs in the lattice is less than that in a homogeneous medium.Additionally,we obtain a shorter long-tail distribution of probability density function in an optical lattice.
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.
Ping WangZhongbo LiuKezhao FangWenfeng ZouXiangke DongJiawen Sun