The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline.
Zou GuanguiPeng SupingYin CaiyunXu YanyongChen FengyingLiu Jinkai
During the process of coal prospecting and exploration, different measurement time, different logging instruments and series can lead to systematic errors in well logs. Accordingly, all logging curves need to be normalized in the mining area. By studying well-logging normalization methods, and focusing on the characteristics of the coalfield, the frequency histogram method was used in accordance with the condition of the Guqiao Coal Mine. In this way, the density and sonic velocity at marker bed in the non-key well were made to close to those in the key well, and were eventually equal. Well log normalization was completed when this method was applied to the entire logging curves. The results show that the scales of logging data were unified by normalizing coal logging curves, and the logging data were consistent with wave impedance inversion data. A satisfactory inversion effect was obtained.
Qing-Xi LIN Su-Zhen SHI Shan-Shan LI Li LUO Juan LI Zi-Liang YU