The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A^(2)/O OD process,a pilot-scale A^(2)/O OD plant(375 L)was conducted.At the same time batch tests using sequence batch reactors(12 L and 4 L)were operated to reveal the significance of anoxic phosphorus removal.The results indicated that:The average removal efficiency of COD,NH^(+)_(4),PO^(3–)_(4),and TN were 88.2%,92.6%,87.8%,and 73.1%,respectively,when the steady state of the pilotscale A^(2)/O OD plant was reached during 31–73 d,demonstrating a good denitrifying phosphorus removal performance.Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO^(-)_(2) could be used as electron receptors in denitrifying phosphorus removal,and the phosphorus uptake rate with NO^(-)_(2) as the electron receptor was higher than that with NO^(–)_(3) when the initial concentration of either NO^(-)_(2) or NO^(–)_(3) was 40 mg/L.
Hongxun HOUShuying WANGYongzhen PENGZhiguo YUANFangfang YINWang GAN
The characteristic of phosphorus removal andappropriate change of the traditional operation modes wereinvestigated in UniFed sequencing batch reactor (SBR)laboratory-scale apparatus (40 L), treating actual domesticwastewater with low ratios of C/N (2.57) and C/P (30.18),providing theoretical basis for actual application ofwastewater treatment plant. UniFed SBR system with itsunique operation mode had the distinct superiority ofphosphorus removal. On this occasion, the effect ofvolumetric exchange ratio (VER) and the method ofinfluent introduction for phosphorus removal were studied.When the carbon source became the limiting factor tophosphorus release, the higher the VER, the lower thephosphorus concentration in the effluent. Three differentinfluent patterns, including one-time filling, four-timefilling, and continuous filling with the same quantity ofwastewater could increase the release rate of anaerobicphosphorus from 0.082 to 0.143 mg·P·(L·min)-1. Appropriatechange of the traditional operation modes couldoptimize the efficiency of phosphorus removal. When thefeed/ decant time was extended from 2 h to 4 h, thephosphorous removal efficiency increased from 59.93% to88.45% without any external carbon source. In the mode ofalternation of anoxic-aerobic (A/O) condition, phosphorousremoval efficiency increased from 55.07% to 72.27%clearly. The carbon source in the influent can be usedadequately, and denitrifying phosphorus removal wascarried out in anoxic stage 2 (A2). This mode was optimalfor the treatment of actual domestic wastewater with lowC/N and C/P ratios.