Let A be any subset of positive integers,and P the set of all positive primes.Two of our results are:(a) the number of positive integers which are less than x and can be represented as 2k + p(resp.p-2k) with k ∈ A and p ∈ P is more than 0.03A(log x/log 2)π(x) for all sufficiently large x;(b) the number of positive integers which are less than x and can be represented as 2q + p with p,q ∈ P is(1 + o(1))π(log x/log 2)π(x).Four related open problems and one conjecture are posed.
CHEN Yong-Gao School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
Let A(n) be the largest absolute value of any coefficient of n-th cyclotomic polynomial Φn(x).We say Φn(x) is flat if A(n) = 1.In this paper,for odd primes p < q < r and 2r ≡±1(mod pq),we prove that Φpqr(x) is flat if and only if p = 3 and q ≡ 1(mod 3).
JI ChunGang School of Mathematical Sciences,Nanjing Normal University,Nanjing 210097,China
Let m0,m1,m2,…be positive integers with mi〉 2 for all i. It is well known that each nonnegative integer n can be uniquely represented as n= a0 + a1m0+a2m0m1+…+atm0m1m2…mt-1,where 0≤ai≤mi-1 for all i and at≠0.let each fi be a function defined on {0,1,2…,mi-1} with fi(0)=0.write S(n)=i=0∑tfi(ai).In this paper, we give the asymptotic formula for x^-1∑n≤xS(n)^k,where k is a positive integer.