In this paper, we continue the discussion of [12] to establish the Hermite pseudospectral method with weight ω(x) = 1. As an application, we consider the pseudospectral approximation of the reaction-diffusion equation on the whole line, we prove the existence of the approximate attractor and give the error estimate for the approximate solution.
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.