在三氟化硼V(乙醚)∶V(乙酸)=4∶5的混合电解质体系中直接氧化芴,获得芴聚合物膜,其电导率为0.5 S cm-1,高于在纯三氟化硼乙醚中制得的聚芴的电导率0.25 S cm-1.在三氟化硼乙醚∶乙酸=4∶5的混合电解质体系中获得的聚芴膜具有良好的电化学性质和化学稳定性.FTIR,1H-NMR和量化计算表明反应发生在2,7位.紫外和荧光实验表明电解质中少量聚乙二醇1000的存在有利于聚合链的增长.电镜分析,含聚乙二醇1000情况下制备的聚芴膜外观形貌上为更大的片状物,堆叠更为有序.同时荧光光谱表明聚合物是一种良好的蓝色荧光材料,热重分析表明该混合体系中形成聚芴的热稳定性要优于纯三氟化硼乙醚中获得的聚合物.
Poly(benzanthrone-co-thiophene), a new conducting copolymer, was successfully prepared by direct anodic oxidation of benzanthrone and thiophene (Th) in a binary solvent system containing boron trifluoride diethyl etherate (BFEE) and acetonitrile (ACN). The as-formed copolymer film electrodeposited with monomer feed ratio of benzanthrone/Th = 1:1 at the applied potential of 1.3 V versus Ag/AgCl exhibited the advantages of both polybenzanthrone and polythiophene, such as active electrochemical behavior, excellent thermal stability, relatively high electrical conductivity and mechanical properties. UV-Vis spectroscopy, 1H-NMR and SEM were used to characterize and investigate the structures and morphologies of the copolymers. Fluorescence spectroscopy studies revealed that the obtained copolymer films show strong emission at about 525 nm. Moreover, the emitting properties of the copolymers could be tuned by changing some parameters during the electropolymerization process, such as monomer feed ratio.