Platymonas (Tetraselmis) subcordiformis is a unicellular marine green alga. It was found to be very sensitive to the herbicide Basta through a sensitivity test indicating it could be employed as a selective agent. The bar gene is a practicable and selectable marker gene. The vector containing the expression cassette of the bar gene was transferred to P. subcordiformis by both particle bombardment and glass-bead agitation and transformants were then selected using Basta. Finally, Southern blotting analysis indicated that the bar gene had been successfully integrated into the nuclear genome of P. subcordiformis using both of the transgenic techniques, with the transformation efficiency of the glass-bead method being slightly higher than that of particle bombardment. This is the first report on stable transformation of P. subcordiformis, and will improve fundamental research and enlarge application of this alga.
Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HC1, H3PO4 and C4H404 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121~C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.