Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied.
The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/three-dimensional variational(ETKF/3DVAR) Hybrid system for the Weather Research and Forecasting(WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance,respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI radiance assimilation.