Microcapsules with multiple compartments are of significant importance in many applications such as smart drug delivery, microreactor, complicated sensor, and so on. Here we report a novel compound-fluidic electrospray method that could fabricate multicompartment microcapsules in a single step. The as-prepared microcapsules have multiple compartments inside. The compartments are separated from each other by inner walls made from shell materials, and different content can be independently loaded in each of them without any contact. We assemble a hierarchical compound nozzle by inserting certain numbers of metallic inner capillaries separately into a blunt metal needle. The particular configuration of the compound nozzle induces a completely and independently envelope of core fluids by shell fluid, as a result of which mulicomponent microcapsules with multicompartment structure can be obtained. And also, the number of inner compartments and the corresponding encapsulated components can be controlled by rationally designing the configuration of the compound nozzle. This general method can be readily extended to many other functional materials, especially for the effective encapsulation of active ingredients, such as sensitive and reactive materials.
Biological light-driven proton pumps which could transfer light energy to electrical energy have aroused intense interest in the past years.Many related researches have been conducted to mimic this process in vitro because of its potential significant applications.This review describes the progress in biomimetic photoelectric conversion systems based on different kinds of promising artificial membranes.Both biological bacteriorhodopsin and the photosensitive chemical molecules which could be used to achieve the photoelectric conversion function are discussed.Also a short outlook in this field is demonstrated at the end.
The authors presented a facile approach to prepare highly-ordered sub-micrometer scaled cylindrical diamond arrays based on a chemical vapor deposition method,where the accurate control of the style of crystal seeds dispersion and the growth time are very crucial.The as-prepared diamond array showed good conductivity which was originated from the proper boron doping,and moreover,it exhibited good field emission property with low turn-on field and high emission current.Importantly,this approach can be easily applied to the preparation of various micro-patterned one-dimensional diamond arrays.
ZHAO Tian-yiLIU Hui-biaoWANG Chun-ruLI Yu-liangLIU HuanJIANG Lei