In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, hut also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.
The variable structure controller is designed for a class of nonlinear uncertain time-delay system by using robust observer, and incorporating H-infinity control technique, the controller can guarantee the H-infinity performance of sliding mode dynamics and satisfy the reaching condition, which also does not require uncertainties to satisfy matching condition and linear boundary condition. The simulation example is given to illustrate the method.