Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were investigated. Results show that the erosion at impingement angle of 30°is more than that of 90°. The erosion resistance of coatings was enhanced uith the inereaase of temperature. Coatings had a better erosion resislance than substrwles. The erosion changed from ductile behariors to brittle behaviors above 450℃ . At high temperature, the erosion resistances were superior to those at low temperwlure and roonl temperwlure. Cowlings had much higher corrosion properties than substrates. The temperature had a little effect on the corrosion resistance of coatings ; The corrosion losing of cowlings increased slowly with the increase of corrosion time. The HVAS-sprayed Fe-Al/Cr3C2 coatings exhibited a high bond strength and hardness.
An experimental study has been carried out to investigate the effect of microstructure on sliding wear behavior of Fe-Al coatings and Fe-Al/WC composite coatings produced by high velocity arc spraying (HVAS) and cored wires. After heat treatment at 300°C, 450°C, 550°C, 650°C and 800°C, the microstructure of the coatings will be changed. The changes of microstructure have obvious effects on the microhardness of the coatings, which may be the most important factor influencing the coatings sliding wear behavior. After heat treated at 450°C-650°C, increasing of the amounts of iron aluminides (including Fe3Al and FeAl ) and dispersion strengthening of Fe2\V2C and Fe6W6C will lead to a rise of microhardness of the coatings. Increasing the microhardness through heat treatment would improve the sliding wear resistance of the iron aluminide based coatings coatings.