In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achieve an overall system model,the system is divided into five modules:the PEMFC stack(anode and cathode flows,membrane hydration,and stack voltage and power),cathode air supply(air compressor,supply manifold,cooler,and humidifier),anode fuel supply(hydrogen valve and humidifier),cathode exhaust exit(exit manifold and water return),and power conditioning(DC/DC and DC/AC) modules.Using a combination of empirical and physical modeling techniques,the model is developed to set the operation conditions of current,temperature,and cathode and anode gas flows and pressures,which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system.The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system,which is mathematically simple for system parameters and control designs.
Ying-ying ZHANGJi-chang SUNYing ZHANGXi LIOuang-yi CAO
Taking a small pressure change in the gas film of self-acting gas-lubricated journal bearings into account, the corresponding nonlinear Reynolds equation is linearized through appropriate approximation and a modified Reynolds equation is derived and solved by means of the finite difference method (FDM). The gas film pressure distribution of a self-acting gas-lubricated journal bearing is attained and the load capacity is calculated. The numerical solution has a better agreement with experimental data than a direct numerical solution for different values of the bearing number. It is of interest to note that the eccentricity ratio, at which the new numerical solution is in better agreement with experimental data, is different when the bearing number is changing. The new numerical solution is slightly larger when the eccentricity ratio is smaller, and becomes slightly smaller when the eccentricity ratio is larger.
基于商用电磁场有限元软件以及M e issner效应假设,提出了对由块状高温超导体和永磁体组成的高温超导推力轴承静态特性进行分析的方法,分析了永磁体的结构对高温超导推力轴承悬浮力的影响。结果发现:永磁体的结构及磁极排列方式对高温超导推力轴承悬浮力的影响很大,适当地选择永磁体的结构和磁极排列方式可以显著地提高高温超导推力轴承的悬浮力。