Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both boundary element method and compliance matrix methods: small number of inputting data, simple and convenient model, precise solution, short calculating time and requirements for a small quantity of computer memory. In comparison to the other BEM with friction problems, we obtain more precise solution and less iteration times. The effect of friction coefficient on contact area. contace state, and relative displacement, normal and tangential stress was analyzed by two examples. And because of the quickness of calculation of program and efficient method, we visualize the result in virtual reality (VR) environment. We grant the real time of VR and provide more immersion to users who ware the VR device.
This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behavior rules to help to plan out welding paths for robots collision free, which is a base fixed problem. Finally, we testify the algorithm to be practical in virtual environment, and output robot programs to direct production process. This new way will help us to find a new development method for multiple robots path planning.