A family (X, B1),(X, B2),..., (X, Bq) of q STS(v)s is a λ-fold large set of STS(v) and denoted by LSTSλ(v) if every 3-subset of X is contained in exactly A STS(v)s of the collection. It is indecomposable and denoted by IDLSTSx(v) if there does not exist an LSTSx, (v) contained in the collection for any λ 〈 λ. In this paper, we show that for λ = 5, 6, there is an IDLSTSλ(v) for v ≡ 1 or 3 (rood 6) with the exception IDLSTS6(7).
A family (X, B1), (X, B2), . . . , (X, Bq) of q STS(v)s is a λ-fold large set of STS(v) and denoted by LSTSλ(v) if every 3-subset of X is contained in exactly λ STS(v)s of the collection. It is indecomposable and denoted by IDLSTSλ(v) if there exists no LSTSλ (v) contained in the collection for any λ < λ. In 1995, Griggs and Rosa posed a problem: For which values of λ > 1 and orders v ≡ 1, 3 (mod 6) do there exist IDLSTSλ(v)? In this paper, we use partitionable candelabra systems (PCSs) and holey λ-fold large set of STS(v) (HLSTSλ(v)) as auxiliary designs to establish a recursive construction for IDLSTSλ(v) and show that there exists an IDLSTSλ(v) for λ = 2, 3, 4 and v ≡ 1, 3 (mod 6).
JI LiJun1, TIAN ZiHong2, & KANG QingDe2 1Department of Mathematics, Suzhou University, Suzhou 215006, China