The third-order optical nonlinearities of [(CH3)4N]Au(dmit)2 (dmit = 4,5-dithiolate-1,3-dithiole-2-thione) at 532 nm and 1064 nm are investigated using the Z-scan technique with pulses of picoseconds duration. The Z-scan spectra reveal a strong nonlinear absorption (reverse saturable absorption) and a negative nonlinear refraction at 532 nm. No nonlinear absorption is observed at 1064 nm. The molecular second-order hyperpolarizability γ for the [(CH3)4N]Au(dmit)2 molecule at 532nm is estimated to be as high as (2.1 ±0.1) × 10^-31 esu, which is nearly three times larger than that at 1064 nm. The mechanism responsible for the difference between the results is analysed. Nonlinear transmission measurements suggest that this material has potential applications in optical limiting.
Composite thin films of PbTiO3 nano-crystals and high transparency polymer polyetherketone (PEK-c) for application of non-linear optical devices were prepared by spin coating. The size of PbTiO3 nano-crystals was estimated to be 30-40 nm using a transmission electron microscope. The refractive index and the mode propagation losses at 633 nm were measured using the prism coupling technique and improved photographic technique respectively. They were found to be 1.6545 and 2.00 dB cm^-1 (fundamental mode),respectively. Moreover, it is observed that this loss is increased at higher mode indices.