Cross-sectional investigation is an important method to study ion irradiation effects in the depth direction. In this study, 2 Me V H^+was implanted in 6 H-SiC single crystals to investigate the effects of light ion irradiation on SiC. Raman spectroscopy and scanning electronic microscopy(SEM) were carried out on crosssectional samples to reveal the in-depth damage states and dopant behavior. The most damaged region is a little shallower than that predicted by the SRIM procedure,owing to the uncertainty in SRIM simulations. Layered structures representing zones of varying damage after2 MeV H ion irradiation are clearly observed. Two bands are observed in SEM images, of which on band corresponds to the damage peak, while the other band at the end of the H ion-affected area is probably a result of H diffusion propelled by a hydrogen-rich layer during irradiation.A charge accumulation effect related with conductivity on the sample surfaces during SEM tests is observed in theH-implanted area. A model is proposed to explain these phenomena.
Yttria-stabilized zirconia (YSZ) is irradiated with 2.0-MeV Au2+ ions and 30-keV He+ ions. Three types of He, Au, Au + He (successively) ion irradiation are performed. The maximum damage level of a sequential dual ion beam implanted sample is smaller than single Au ion implanted sample. A comparable volume swelling is found in a sequential dual ion beam irradiated sample and it is also found in a single Au ion implanted sample. Both effects can be explained by the partial reorganization of the dislocation network into weakly damaged regions in the dual ion beam implanted YSZ. A vacancy-assisted helium trapping/diffusion mechanism in the dual ion beam irradiated condition is discussed. No phase transformation or amorphization behavior happens in all types of ion irradiated YSZ.
Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility,resulting from irradiation-induced defects such as vacancies,interstitials and dislocation loops,etc.In this paper,we develop an elastic-viscoplastic model for irradiated multi-phase polycrystalline BCC materials in which the mechanical behaviors of individual grains and polycrystalline aggregates are both explored.At the microscopic grain scale,we use the internal variable model and propose a new tensorial damage descriptor to represent the geometry character of the defect loop,which facilitates the analysis of the defect loop evolutions and dislocation-defect interactions.At the macroscopic polycrystal scale,the self-consistent scheme is extended to consider the multiphase problem and used to bridge the individual grain behavior to polycrystal properties.Based on the proposed model,we found that the work-hardening coefficient decreases with the increase of irradiation-induced defect loops,and the orientation/loading dependence of mechanical properties is mainly attributed to the different Schmid factors.At the polycrystalline scale,numerical results for pure Fe match well with the irradiation experiment data.The model is further extended to predict the hardening effect of dispersoids in oxide-dispersed strengthened steels by the considering the Orowan bowing.The influences of grain size and irradiation are found to compete to dominate the strengthening behaviors of materials.
The latent ion track in α-quartz is studied by molecular dynamics simulations. The latent track is created by depositing electron energies into a cylindrical region with a radius of 3nm. In this study, the electron stopping power varies from 3.0keV/nm to 12.0keV/nm, and a continuous latent track is observed for all the simulated values of electron stopping power except 3.0keV/nm. The simulation results indicate that the threshold electron stopping power for a continous latent track lies between 3.0keV/nm and 3.7 keV/nm. In addition, the coordination defects produced in the latent track are analyzed for all the simulation conditions, and the results show that the latent track in α-quartz consists of an O-rich amorphous phase and Si-rich point defects. At the end of this paper, the influence of the energy deposition model on the latent track in α-quartz is investigated. The results indicate that different energy deposition models reveal similar latent track properties. However, the values of the threshold electron stopping power and the ion track radius are dependent on the choice of energy deposition model.
An Al0.2Ga0.8N/AlN/Al0.2Ga0.8N heterostructure was grown by metalorganic chemical vapor deposition on a sapphire (0001) substrate with a thick (〉 1 μm) GaN intermediate layer. The Al composition was determined by Rutherford backscattering (RBS). Using the channeling scan around an off-normal [1213] axis in the (1010) plane of the Al0.2Ga0.8N layer, the tetragonal distortion eT, which is caused by the elastic strain in the epilayer, is investigated. The results show that eT in the high-quality Al0.2Ga0.8N layer is dramatically released by the AIN interlayer from 0.66% to 0.27%.
Molecular dynamics simulations are performed to investigate the influence of irradiation damage on the mechanical properties of copper. In the simulation, the energy of primary knocked-on atoms (PKAs) ranges from 1 to 10 keV, and the results indicate that the number of point defects (vacancies and interstitials) increases linearly with the PKA energy. We choose three kinds of simulation samples: un-irradiated and irradiated samples, and comparison samples. The un-irradiated samples are defect-free, while irradiation induces vacancies and interstitials in the irradiated samples. It is found that due to the presence of the irradiation-induced defects, the compressive Young modulus of the single-crystal Cu increases, while the tensile Young modulus decreases, and that both the tensile and compressive yield stresses experience a dramatic decrease. To analyze the effects of vacancies and interstitials independently, the mechanical properties of the comparison samples, which only contain randomly distributed vacancies, are investigated. The results indicate that the vacancies are responsible for the change of Young modulus, while the interstitials determine the yield strain.
Irradiation effects in Ni–17Mo–7Cr alloy have been systematically investigated by using 3 Me V Au ions at different fluences ranging from 8 × 10^13cm^-2to 2.3 × 10^15cm^-2,corresponding to doses of 1–30 dpa.The results indicated that sample microstrain increased gradually from 0.14 to 0.22% as dose increased from 0 to 30 dpa.Besides,the nanohardness of Ni–17Mo–7Cr alloy increased with irradiation dose until 10 dpa,and then,softening effect became dominant while further increasing dose to 30 dpa.After being irradiated at room temperature,the swelling rate of Ni–17Mo–7Cr alloy was found to be around 0.04% per dpa.These data are helpful in estimating the irradiation resistance of this newly developed Ni–17Mo–7Cr alloy in nuclear energy systems.