Bracketed words are basic structures both in mathematics (such as Rota-Baxter algebras) and mathematical physics (such as rooted trees) where the locations of the substructures are important. In this paper, we give the classification of the relative locations of two bracketed subwords of a bracketed word in an operated semigroup into the separated, nested, and intersecting cases. We achieve this by establishing a correspondence between relative locations of bracketed words and those of words by applying the concept of Motzkin words which are the algebraic forms of Motzkin paths.
We construct free Hom-semigroups when its unary operation is multiplicative and is an involution. Our method of construction is by bracketed words. As a consequence , we obtain free Horn-associative algebras generated by a set under the same conditions for the unary operation.
A dendriform algebra defined by Loday has two binary operations that give a two-part splitting of the associativity in the sense that their sum is associative. Sim- ilar dendriform type algebras with three-part and four-part splitting of the associativity were later obtained. These structures can also be derived from actions of suitable linear operators, such as a Rota-Baxter operator or TD operator, on an associative algebra. Mo- tivated by finding a five-part splitting of the associativity, we consider the Rota-Baxter TD (RBTD) operator, an operator combining the Rota-Baxter operator and TD oper- ator, and coming from a recent study of Rota's problem concerning linear operators on associative algebras. Free RBTD algebras on rooted forests are constructed. We then introduce the concept of a quinquedendriform algebra and show that its defining relations are characterized by the action of an RBTD operator, similar to the cases of dendriform and tridendriform algebras.
This paper studies the concepts of a totally compatible dialgebra and a totally compatible Lie dialgebra,defined to be a vector space with two binary operations that satisfy individual and mixed associativity conditions and Lie algebra conditions respectively.We show that totally compatible dialgebras are closely related to bimodule algebras and semi-homomorphisms.More significantly,Rota-Baxter operators on totally compatible dialgebras provide a uniform framework to generalize known results that Rota-Baxter related operators give tridendriform algebras.Free totally compatible dialgebras are constructed.We also show that a Rota-Baxter operator on a totally compatible Lie dialgebra gives rise to a PostLie algebra,generalizing the fact that a Rota-Baxter operator on a Lie algebra gives rise to a PostLie algebra.