The polymeric Co(Ⅱ) complex[Co(Hdhpc)(py)]n(1)(py = pyridine,H3dhpc =2,6-dihydroxypyridine-4-carboxyl acid) was prepared and characterized.X-ray diffraction data revealed that the compound crystallizes in dimorphic 1α and 1β forms at room and low temperature,respectively.The former crystallizes in the orthorhombic crystal system,space group Pbcm with a =7.209(1),b = 14.834(3),c = 15.376(3) A°,V= 1644.3(5)A°3,Z = 4,C(16)H(13)CoN3O4,Mr = 370.22,Dc= 1.496 g/cm^3,F(000) = 756,μ = 1.068 mm^-1,R = 0.0633 and wR = 0.1192.While 1β is attributed to the monoclinic space group C2/c with a = 32.102(4),b = 7.022,c = 14.945(2)A°,β = 109.052(5)°,V= 3184.4(6) A°3,Z= 8,Dc= 1.544 g/cm^3,F(000) = 1512,μ = 1.103 mm^-1,R = 0.0428 and wR =0.0797.The conformation changes of pyridines between Co-citrazinate planes leading to a reversible single-crystal to single-crystal transformation.The variable temperature magnetic data indicate a weak ferrimagnetism.
Two novel series of sixteen aminoalkyl-substituted polymethoxychalcone derivatives 2a--2h and 3a--3h were synthesized from 2'-hydroxy-3,4,5,4',6'-pentamethoxy chalcone(1) through extending alkoxy side chain at the 2'-position, and introducing amine hydrogen bond receptor at the end of the side chain. The structures of all the synthesized compounds were confirmed by 1H NMR, 13C NMR and MS techniques. Furthermore, all the compounds were tested for antiproliferative activities in vitro against a panel of three human cell lines(HeLa, HCC1954 and SK-OV-3) via CCK-8 assay. The results show that all the target compounds exhibit antiproliferative activities against the three human cancer cells with IC50 values of 4.62-48.21μmol/L, except compound 2h against SK-OV-3 cells. Most of these compounds were more active when compared to the positive control cis-Platin.
阿魏酸及其酰胺类化合物是一类具有重要生物活性和药理作用的天然产物及其衍生物.本论文以廉价易得的香兰素为原料,经克脑文盖尔(Knoevenagel)缩合反应得到阿魏酸(1).然后以N,N′-二环己基碳酰亚胺(DCC)为脱水剂,4-二甲氨基吡啶(DMAP)为催化剂,阿魏酸分别与8种芳香胺反应合成了8种阿魏酸酰胺类化合物2-9.其中7和8是未见文献报道的新化合物.所合成的阿魏酸酰胺类化合物通过核磁共振氢谱(1 H NMR)、核磁共振碳谱(13C NMR)、质谱(MS)和红外光谱(IR)进行了结构表征.该阿魏酸酰胺类化合物合成方法原料易得、工艺简便、收率较高.
The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.