Strength of discontinuities with complex structure is an important topic in rock engineering.A large number of studies have shown that fractal is applicable in the description of this discontinuity.Using fractal interpolation method for the generation of rock joints,numerical experiments of shear tests of the jointed rock mass model were carried out using FLAC^(3D).The test results show that the real rock joints can be simulated by fractal curves obtained by fractal interpolation.The fractal dimension is an important factor for the characterization of jointed rock mass;test results show that the fractal dimension of rock joints can be related to the equivalent cohesion strength and shear strength of the rock mass.When the fractal dimension of the joint surface is less than critical dimension Dc 1.404,the cohesion strength and shear strength of the rock mass increase as the fractal dimension increases;for larger fractal dimensions,all mechanical parameters decrease as the fractal dimension increases.Joint surfaces with different degrees of roughness were obtained by the fractal interpolation method.Three types of failure modes were observed in the tests:climbing slip failure,climbing gnawing fracture,and non-climbing gnawing fracture.
The seepage property of low-permeability rock is of significant importance for the design and safety analysis of underground cavities. By using a self-developed test system, both permeability and porosity of granite from an underground oil storage depot were measured. In order to study the influence of rock types on permeability, a tight sandstone was selected as a contrast. The experimental results suggested that the porosity of this granite is less than 5% and permeability is low to 10–20 m^2 within the range of effective stress. During the loading process, both exponential relationship and power law can be utilized to describe the relationship between effective stress and permeability. However, power law matches the experimental data better during the unloading condition. The stress dependent porosity of granite during loading process can be described via an exponential relationship while the match between the model and experimental data can be improved by a power law in unloading paths. The correlation of permeability and porosity can be described in a power law form. Besides, granite shows great different evolution rules in permeability and porosity from sandstone. It is inferred that this difference can be attributed to the preparing of samples and different movements of microstructures subjected to effective stress.
JIA Chao-junXU Wei-yaWANG Huan-lingWANG Ru-binYU JunYAN Long