Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.
A series of nano silica/silicone modified waterborne polyurethane(WPU) have been synthesized from polytetramethylene glycol and isophorone diisocyanate, dihydroxymethyl propionic acid and triethylamine, ethylenediamine, trimethylolpropane, nano-SiO2 and the silane coupling agent KH550. The effect of the dosage of nano-SiO2 on the WPU-Si membrane and the coated RDX(cyclotrimethylenetrinitramine) particles have been studied in terms of their surface properties, mechanical properties, and thermal stability. The results showed that with the increase of Si content, the stability of the emulsion reduced gradually. The material with more Si content displayed an increased thermodynamic stability, an increased high temperature resistance, an increased tensile strength and a decreased elongation at break. With the increase of Si content, the surface tension of the material decreased, the bibulous rate reduced, and the contact angle increased gradually, so that the surface tension of the polyurethane and RDX are close to each other which could improve the performance of coating.
Li YangZhao TianboQu XiaolingDing HongjingLi Fengyan
Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.
Wang JiaZhao TianboLi ZunfengZong BaoningDu ZexueZeng Jianli
Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited much higher activity than traditional ZSM-5 zeolite under the same condition. It is worth mentioning that the polymer product selectivity of aluminosilicate was much lower than that of ZSM-5, which might be useful for implementing the catalytic cracking process. The unique structure of macroporous aluminosilicate with interconnected-macropores and continuous skeletons was believed to be responsible for its excellent catalytic activity and low polymer product selectivity. Detailed discussion on the reaction pathway was also conducted.
This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.