After the application of methionine, a progressive and significant increase occurred in five volatile organic sulfur compounds (VOSCs): methanethiol (MESH), dimethyl sulfide (DMS), dime^yl disulfide (DMDS), dimethyl trisulfide (DMTS) and dimethyl tetrasulfide (DMTeS). Even in the untreated control without a methionine addition, methionine and its catabolites (VOSCs, mainly DMDS) were found in considerable amounts that were high enough to account for the water's offensive odor. However, blackening only occurred in two methionine-amended treatments. The VOSCs production was observed to precede black color development, and the reaching of a peak value for total VOSCs was often followed by water blackening. The presence of glucose stimulated the degradation of methionine while postponing the occurrence of the black color and inhibiting the production of VOSCs. In addition, DMDS was found to be the most abundant species produced after the addition of methionine alone, and DMTeS appeared to be the most important compound produced after the addition of methionine+glucose. These results suggest that methionine acted as an important precursor of the VOSCs in lakes suffering from algea-induced black bloom. The existence of glucose may change the transformation pathway of methionine into VOSCs to form larger molecular weight compounds, such as DMTS and DMTeS.
Batch experiments were carried out to investigate the effects the desorption characteristics of atrazine from a sandy loam soil of initial atrazine concentrations and consecutive desorption steps on As initial atrazine concentration increased, the average percentage of atrazine desorption on the sandy loam soil ranged gradually from 23.1% to 38.5% after five consecutive desorption steps. The values of the Freundlich capacity parameter, kdes, derived from the initial concentration and time-dependent desorption isotherm were consistently higher than those associated with sorption. The opposite trend was observed only for the values of nonlinear parameter, rides, from the initial concentration-dependent desorption isotherms. Atrazine hydrolysis to hydroxyatrazine and bound residue formation were mainly responsible for the observed hysteresis in its sorption and desorption isotherms. For the initial concentration-dependent desorption isotherms, as initial atrazine concentration increased, the values of hysteretic coefficients ω and λ decreased, and H values increased. However, the relationships between initial atrazine concentration and hysteretic coefficients were not pronounced for ω, H, or λ. For the time-dependent desorption isotherms, λ, and H values increased as the atrazine desorption step proceeded. The correlation between hysteretic coefficient and desorption step was highly significant for λ (P 〈 0.0001), but not for H.