Fe doped Beta zeolite with different Fe contents were prepared by ion exchange by changing the volume or the concentration of a Fe salt solution. For a particular mass of Fe salt precursor, the concentration of the metal salt solution during ion exchange influenced the ion exchange capacity of Fe, and resulted in different activities of the Fe-Beta catalyst. Fe-Beta catalysts with the Fe contents of (2.6, 6.3 and 9) wt% were synthesized using different amounts of 0.02 mol/L Fe salt solution. These catalysts were studied by various characterization techniques and their NH3-SCR activities were evaluated. The Fe-Beta catalyst with the Fe content of 6.3 wt% exhibited the highest activity, with a temperature range of 202-616℃ where the NOx conversion was 〉 80%. The Fe content in Beta zeolite did not influence the structure of Beta zeolite and valence state of Fe. Compared with the Fe-Beta catalysts with low Fe content (2.6 wt%), Fe-Beta catalysts with 6.3 wt% Fe content possessed more isolated Fe3. active sites which led to its higher NH3-SCR activity. A high capacity for NH3 and NO adsorption, and a high activity for NO oxidation also contributed to the high NH3-SCR activity of the Fe-Beta catalyst with 6.3 wt%. However, when the Fe content was further increased to 9.0 wt%, the amount of FexOy nanoparticles increased while the amount of isolated Fe3+ active sites was unchanged, which promoted NH3 oxidation and decreased the NH3-SCR activity at high temperature.
LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X‐ray diffraction(XRD),Raman spectroscopy(Raman),O2temperature programmed desorption(O2‐TPD),H2temperature programmed surface reaction(H2‐TPR)and X‐ray photoelectron spectroscopy(XPS)were used to characterize the physicochemical properties of the LaMnO3samples.The preparation methods had obvious effects on the distribution of oxygen and manganese species on the catalyst surface.The reaction followed the suprafacial mechanism;the activity corresponded with the high amount of Mn4+and adsorbed oxygen species.LaMnO3prepared by the citrate sol‐gel method had the best performance for vinyl chloride combustion with T90of182°C.The optimal activity was attributed to the improved redox capability of Mn4+/Mn3+.More available adsorbed oxygen and Mn4+species on the surface were mainly responsible for the remarkable enhancement of the catalytic activity.
Li WangHongkai XieXingdan WangGuizhen ZhangYanglong GuoYun GuoGuanzhong Lu
Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.