Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.The scales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontal links,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system. Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wing surface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining the self-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaning substrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.
Gang Sun~(1,2), Yan Fang~(1,2), Qian Cong~1, Lu-quan Ren~11. Key Laboratory of Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University,Changchun 130022, P. R. China2. School of Life Science, Changchun Normal University, Changchun 130032, P. R. China
The surface shape, structure, biomaterial and wettability of moth wings (10 NOCTUIDAE species) from the northeast region of China were qualitatively and quantitatively studied by means of a stereoscopic microscope, a scanning electronic microscope, fourier transform infrared spectroscopy(FT-IR) and the interface contact angle measurement. The observation shows that there are scales arranged like over-lapping tiles on the surface of the moth wings. The shapes of the scales are different between species. They overlap horizontally and there is particular space vertically in the direction of the wing veins. The surface of the scale is structured by micron-class grooves and nanometer-class vertical gibbosities. The biomaterial components of the moth wing scale are mostly made up of protein, lipids and chitin. The observation also shows that the contact angle for wings with scales is in the range from 144.8° to 152.9°, while that for those without scales is from 90.0° to 115.9°. It indicates that the surfaces of the wings with scales are more hydrophobic. According as Cassie model, the equation of wettability on the NOCTUIDAE moth wing surface is established and the hydrophobic mechanism is analyzed. It is concluded that the hydrophobicity of the moth wings is induced by the multivariate coupling of the shape, structures and biomaterial of the scales.
Twenty-nine species (24 genera, 6 families) of butterflies typical and common in northeast China were selected to make qualitative and quantitative studies on the pattern, hydrophobicity and hydrophobicity mechanism by means of scanning electron microscopy and contact angle measuring system. The scale surface is composed of submicro-class vertical gibbosities and horizontal links. The distance of scale is 48—91 μm, length 65—150 μm, and width 35—70 μm. The distance of submicro-class vertical gib-bosities on scale is 1.06—2.74 μm, height 200—900 nm, and width 200—840 nm. The better hydropho-bicity on the surface of butterfly wing (static contact angle 136.3°—156.6°) is contributed to the co-effects of micro-class scale and submicro-class vertical gibbosities on the wing surface. The Cassie equation was revised, and new mathematical models and equations were established.