Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolytes was adopted to fabricate three types of TiO2 NTAs distinguished by their anodization time.Compared to the bare Ti surface,the incipient boiling wall superheat on the TiO2 NTAs was decreased by 11 K.Both the critical heat flux and heat transfer coefficient of pool boiling on the TiO2 NTAs were higher than those from boiling on a bare Ti surface.The measured maximum critical heat flux and heat transfer coefficient values were 186.7 W/cm2 and 6.22 W/cm2K,respectively.Different performances for the enhancement of heat transfer by the three types of TiO2 NTAs were attributed to the different degrees of deformation in the nanostructure during boiling.Long-term performance of the nanomaterial-coated surfaces for enhanced pool boiling showed degradation of the TiO2 NTAs prepared with an anodization time of 3 hours.
In this study, the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically. The energy band diagrams, electrostatic field near the last quantum barrier, carrier concentration in the quantum well, internal quantum efficiency, and light output power are systematically investigated. The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction. These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.
A multi-quantum barrier structure is employed as the electron blocking layer of light-emitting diodes to enhance their performance.Using the non-isothermal multi-physics-field coupling model,the internal quantum efficiency,internal heat source characteristics,spectrum characteristics,and photoelectric conversion efficiency of light-emitting diodes are analyzed systematically.The simulation results show that:introducing multi-quantum barrier electron blocking layer structure significantly increases the internal quantum efficiency and photoelectric conversion efficiency of light-emitting diodes and the intensity of spectrum,and strongly ensures the thermal and light output stability of light-emitting diodes.These results are attributed to the modified energy band diagrams of the electron blocking layer which are responsible for the decreased electron leakage and enhanced carrier concentration in the active region.
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.
In this study,GaN-based light-emitting diodes(LEDs)with and without AlGaInN electron blocking layer(EBL)under self-heating effect are numerically studied.The energy band diagram,carrier transport and distribution characteristics,internal Joule heat and non-radiative recombination heat characteristics,and internal quantum efficiency are investigated.The effect of Auger recombination coefficient on efficiency droop under self-heating effect is also studied.The simulation results show that efficiency droop is markedly improved when an AlGaInN EBL is placed between p-type GaN layer and active region.However,the chip temperature of LED is significantly increased simultaneously.The results also indicate that Auger recombination can be neglected because it is not the major contributor for the internal heat source.The efficiency droop is unrelated to the internal heat source.However,both electron leakage and Auger recombination play important roles in efficiency droop mechanism under self-heating effect.