In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility.
In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigated. Theuniaxial tensile test, the four-point bending test, thecompressive test, the drying shrinkage test and theenvironmental scanning electron microscope (ESEM) wereemployed to investigate the tensile strain capacity, flexuraldeformation capacity, compressive strength, drying shrinkage,crack width and self-healing of SHCC. The experimentalresults show that SHCC modified with SAP particles exhibitsexcellent ductility and deformability, and the tensile strain isup to about 4.5% and the average crack width is controlledaround 40 μm. Meanwhile, the drying shrinkage of SHCCmodified with SAP particles can reduce by about 60%.Furthermore, the self-healing behavior is observed in thecracks of specimen after three cycles of high-low relativehumidity curing, and the self-healing products can completelyfill the cracks of SHCC specimens modified with SAPparticles. It is, therefore, feasible to produce SHCC materialmodified with SAP particles, while simultaneously retaininghigher material ductility.
In order to improve the self-healing behavior and the recovery of mechanical properties of engineered cementitious composites(ECC),the approach of incorporating superabsorbent polymer(SAP)in mixtures is investigated.The rapid water penetration test and four-point bending test were conducted to evaluate the effects of self-healing on the water permeability and mechanical properties of pre-damaged ECC.The self-healing process and self-healing products were observed by the environment scanning electron microscope(ESEM)and energy dispersive X-ray spectroscopy(EDS).The experimental results show that all ECC mixtures exhibit excellent flexural capacity,meanwhile maintaining a crack width below 50μm.The incorporation of SAP particles in ECC can apparently improve the mechanical recovery of ECC mixtures after 10 healing curing cycles,such as flexural deformation and flexural stiffness.The flexural stiffness of ECC containing 4%SAP particles after self-healing can be recovered to 80%.The self-healing test results show that when the water permeability of ECC mixtures incorporating SAP particles is close to zero,only three healing cycles are needed.When ECC incorpora ting more SAP particles,the accelerated self-healing process can be finished in the first three cycles,and self-healing product is mixed Ca(OH)2/CaCO 3 with CaCO 3 being a major component in the later stage.It is,therefore,feasible to produce ECC materials incorporating SAP particles,while simultaneously maintaining higher material ductility and self-healing behavior.