An understanding of the origin of elastic strain is extremely important for both crystalline materials and amorphous materials. Owing to the lack of a long range order in their structure, it is arduous to dynamically study the elastic mechanism of amorphous materials experimentally at atomic scale compared with their crystalline counterparts. Here, the elastic deformation mechanism of amorphous silica nanowires(NWs) has been studied for the first time via in situ elastic tensile tests in a transmission electron microscope. Radial distribution functions(RDFs) calculated from the corresponding selected area electron diffraction patterns(SAEDPs) at different strains were used to reconstruct a structural model based on the reverse Monte-Carlo(RMC) method. The result interestingly indicates that the elastic strain of silica glass NWs can be mainly attributed to the elastic elongation of the bond length accompanied by a change in the bond angle distribution. This work is useful for understanding the high strength of amorphous materials.
Submicron and nanostructured body-centered cubic(BCC) metals exhibit unusual mechanical performance compared to their bulk coarse-grained counterparts, including high yield strength and outstanding ductility. These properties are important for their applications in micro-, nano-and even atomic-scale devices as well as for their usages as components for enhancing the performances of structural materials. One aspect of the unusual mechanical properties of small-sized BCC metals is closely related to their dimensional confinement. Decreasing the dimensions of single crystalline metals or the grain sizes of polycrystalline metals contributes significantly to the strengthening of the small-sized BCC metals.In the last decade, significant progress has been achieved in understanding the plasticity and deformation behaviors of small-sized BCC metals. This paper aims to provide a comprehensive review on the current understanding of size effects on the plasticity and deformation mechanisms of small-sized BCC metals. The techniques used for in situ characterization of the deformation behavior and mechanical properties of small-sized samples are also presented.