In order to achieve better Na storage performance, most layered oxide positive electrode materials contain toxic and expensive transition metals Ni and/or Co, which are also widely used for lithium-ion batteries. Here we report a new quaternary layered oxide consisting of Cu, Fe, Mn, and Ti transition metals with O3-type oxygen stacking as a positive electrode for room-temperature sodium-ion batteries. The material can be simply prepared by a high-temperature solidstate reaction route and delivers a reversible capacity of 94 m Ah/g with an average storage voltage of 3.2 V. This paves the way for cheaper and non-toxic batteries with high Na storage performance.
Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.
Room-temperature sodium-ion batteries have attracted increasing interest in recent years because of abundant sodium reserves and the low costs.Grid-scale energy storage applications are particularly relevant to this battery technology.Here,we present our recent progress in researching room-temperature sodium-ion batteries,and focus on new electrode materials,including cathodes and anodes,for both non-aqueous and aqueous systems.
Lithium(Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity(3860 mAh/g), low density(0.534 g/cm3), and low negative electrochemical potential(-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2](Li FSI) and Li[N(SO2CF3)2](Li TFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|Li FePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 m A/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.
The structure evolution of fluorinated graphite (CFx) upon the Li/Na intercalation has been studied by first- principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and E The strong and localized Coulomb attraction between Li and F atoms breaks the C-F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.
Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C_(14)H_6 O_4 Na_2 composited with carbon nanotube(C_(14)H_6 O_4 Na_2-CNT), used as an anode material for sodium-ion batteries in etherbased electrolyte. The C_(14)H_6 O_4 Na_2-CNT electrode delivers a reversible capacity of 173 mAh g^(-1) and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C.Furthermore, the average Na insertion voltage of 1.27 V vs. Na^+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.