Flange height and lip accuracy are generally restricted by the formability of sheet metals in the conventional hole-flanging operation. A new hole-flanging process, named upsetting-flanging process, was proposed to obtain a more substantial flange from thick plate. The finite element method (FEM) with DEFORM was utilized to simulate the novel upsetting-flanging process and the influence of geometric parameters on the flange height was studied in details. A series of flanging experiments with A1050P-O were carried out to validate the FEM results, and the variations of Vicker hardness in the plate section were discussed. The results showed that the newly upsetting-flanging process revealed higher flange height and better lip accuracy than the conventional hole-flanging process, and the results between FEM simulations and experiments showed good agreement. Besides, the hardness of the plate around the flange part increases due to the work hardening after the upsetting-flanging process, which reveals better superiority in strength for the subsequent machining or assembling processes.