To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydrogen-air mixture is H2+0.5O2→H2O,the reaction rate model is ?? =1.13×10?5[H2][O2]exp(?46.37T0/T) mol(cm3 s)?1,and the transport coefficient model is ?=K/CP=ρD=7.0×10?5T 0.7 g(cm s)?1.By using current models and the reference model to simulate steady Zeldovich-von Neumann-Doering(ZND) wave and free-propagating laminar flame,it is found that the results are well agreeable.Additionally,deflagration-to-detonation transition in an obstructed channel was also simulated.The numerical results are also well consistent with the experimental results.These provide a reasonable proof for current method and new models.
The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet ftres or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-ram-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.