In this paper, a domain in a cube is called a coverage hole if it is not covered by the largest component of the random geometric graph in this cube. We obtain asymptotic properties of the size of the largest coverage hole in the cube. In addition, we give an exponentially decaying tail bound for the probability that a line with length s do not intersect with the coverage of the infinite component of continuum percolation. These results have applications in communication networks and especially in wireless ad-hoc sensor networks.
In this paper, two PVD-type algorithms are proposed for solving inseparable linear constraint optimization. Instead of computing the residual gradient function, the new algorithm uses the reduced gradients to construct the PVD directions in parallel computation, which can greatly reduce the computation amount each iteration and is closer to practical applications for solve large-scale nonlinear programming. Moreover, based on an active set computed by the coordinate rotation at each iteration, a feasible descent direction can be easily obtained by the extended reduced gradient method. The direction is then used as the PVD direction and a new PVD algorithm is proposed for the general linearly constrained optimization. And the global convergence is also proved.
Cong-ying HANFang-ying ZHENGTian-de GUOGuo-ping HE