By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing.
Fiber reinforced lattice composites are lightweight attractive due to their high specific strength and specific stiffness.In the past 10 years,researchers developed three-dimensional(3D) lattice trusses and two-dimensional (2D) lattice grids by various methods including interlacing, weaving,interlocking,filament winding and molding hot- press.The lattice composites have been applied in the fields of radar cross-section reduction,explosive absorption and heat-resistance. In this paper,topologies of the lattice composites, their manufacturing routes,as well as their mechanical and multifunctional applications,were surveyed.