您的位置: 专家智库 > >

国家自然科学基金(31271619)

作品数:27 被引量:219H指数:9
相关作者:李民赞孙红沙莎张漫李婷更多>>
相关机构:中国农业大学北京工商大学河北工业大学更多>>
发文基金:国家自然科学基金国家教育部博士点基金中央高校基本科研业务费专项资金更多>>
相关领域:农业科学自动化与计算机技术理学机械工程更多>>

文献类型

  • 27篇期刊文章
  • 2篇会议论文

领域

  • 22篇农业科学
  • 10篇自动化与计算...
  • 4篇理学
  • 1篇机械工程
  • 1篇环境科学与工...

主题

  • 14篇温室
  • 9篇番茄
  • 6篇网络
  • 5篇日光温室
  • 5篇光温
  • 5篇WSN
  • 5篇CO
  • 4篇神经网
  • 4篇神经网络
  • 4篇农药
  • 4篇农药残留
  • 4篇温室番茄
  • 4篇光谱
  • 3篇叶片
  • 3篇水分
  • 3篇图像
  • 3篇图像处理
  • 3篇无线传感
  • 3篇无线传感器
  • 3篇无线传感器网

机构

  • 25篇中国农业大学
  • 4篇北京工商大学
  • 1篇河北建筑工程...
  • 1篇西北农林科技...
  • 1篇河北工业大学
  • 1篇佐治亚大学

作者

  • 16篇李民赞
  • 7篇孙红
  • 6篇张漫
  • 6篇曲英华
  • 6篇沙莎
  • 5篇王红玉
  • 5篇周士力
  • 5篇熊珺
  • 5篇李婷
  • 3篇孙明
  • 2篇叶海建
  • 2篇王伟珍
  • 2篇杨玮
  • 2篇郑立华
  • 2篇李文
  • 2篇刘豪杰
  • 2篇郎睿
  • 1篇邓小蕾
  • 1篇陈军
  • 1篇李寒

传媒

  • 11篇农业机械学报
  • 5篇农业工程学报
  • 3篇Intern...
  • 2篇光谱学与光谱...
  • 1篇北方园艺
  • 1篇江苏农业科学
  • 1篇江苏农业学报
  • 1篇测控技术
  • 1篇中国农业大学...
  • 1篇沈阳农业大学...

年份

  • 2篇2018
  • 4篇2017
  • 2篇2016
  • 10篇2015
  • 5篇2014
  • 6篇2013
27 条 记 录,以下是 1-10
排序方式:
不同浓度沼液对日光温室漂浮式栽培空心菜(Ipomoea aquatica)生长和品质的影响被引量:8
2013年
以鸡粪沼液为肥源,通过日光温室内沼液漂浮式栽培试验,研究不同浓度沼液对空心菜生长和品质的影响。结果表明:在3%~5%浓度范围内,鸡粪沼液能显著提高空心菜的叶绿素含量、生物量和Vc含量,降低亚硝酸盐含量。阶段性添加沼液2%→3%→4%→5%浓度处理和一次性添加沼液3%、5%浓度最适宜空心菜的生长,叶绿素含量和生物量均显著高于对照组;阶段性添加沼液2%→3%→4%→5%浓度处理Vc含量最高,为385.2 mg·kg-1,显著高于对照组;各处理空心菜的亚硝酸盐含量均低于我国无公害蔬菜亚硝酸盐含量限量标准(以NaNO2计≤4.0 mg·kg-1)。沼液漂浮式栽培对提高蔬菜的生物量和品质,减少传统营养液和化肥的使用量,解决沼气工程中大量沼液的消纳难题具有重要意义。
王红玉徐奕琳周士力曲英华
关键词:温室沼液空心菜生物量
不同水分条件下增施CO2对日光温室内番茄生长的影响
试验设置4个CO2浓度(温室内未增施的CO2浓度约450μmol/mol,低、中、高CO2增施浓度分别为(700±50)、(1 000±50)、(1 300±50)μmol/mol)和3个水分条件(低、中、高基质含水率分...
周士力曲英华王红玉熊珺
关键词:日光温室CO2浓度表观量子效率
文献传递
An improved method for prediction of tomato photosynthetic rate based on WSN in greenhouse被引量:6
2016年
In order to improve the efficiency of CO2 fertilizer and promote high quality and yield,it is necessary to precisely control CO2 fertilizer by wireless sensor network based on a model of photosynthetic rate prediction in greenhouse.An experiment was carried out on tomato plants in greenhouse for photosynthetic rate prediction modeling combined rough set and BP neural network.In data acquiring phase,plants growth information and greenhouse environmental information that may have influences on photosynthetic rate,including plant height,stem diameter,the number of leaves and chlorophyll content of functional leaves,air temperature,air humidity,light intensity,CO2 concentration and soil moisture,which were measured.And LI-6400XT photosynthetic rate instrument was used for obtaining net photosynthetic rate of functional leaf.After preliminary processing,135 sets of data were obtained.And twelve of them were used for model test of neural network,while the others were used for modeling.All of the data were normalized before modeling.Two models were built to predict photosynthetic rate based on BP neural network.One had total nine input parameters.The other had six input parameters,chlorophyll content,air temperature,air humidity,light intensity,CO2 concentration,and soil moisture,which were reducted from original nine based on attributes reduction theory of rough set.Both two models have one output parameter,the net photosynthetic rate of single leaf.The genetic algorithm was adopted to reduct attributes.Since continuous data cannot be processed by rough set,the K-mean cluster method was used to discretize the data of nine input parameters before attributes reduction.The prediction results of two models showed that the model with six input parameters had a mean absolute error of 0.6958,an average relative error of 7.28%,a root-mean-square error of 0.7428,and a correlation coefficient of 0.9964,while the other model respectively had 0.4026,4.53%,0.3245 and 0.9965,which proved that the model with minimum attributes had hi
Ji YuhanJiang YiqiongLi TingZhang ManSha ShaLi Minzan
关键词:TOMATOGREENHOUSE
基于WSN的温室番茄光合速率预测被引量:11
2013年
为了提高CO2气肥的利用率,对日光温室番茄开花期光合速率变化进行了研究。采用无线传感器网络系统对温室环境信息进行实时监测;采用LI-6400XT型光合仪测定番茄植株叶片净光合作用速率,并对叶片的环境状况按照一定的规律进行调控。将经过主成分分析后的环境信息作为输入参数,将光合作用速率作为输出参数,利用BP神经网络建立了番茄开花期单叶净光合作用速率的预测模型,并对预测模型进行了性能评估。结果表明,所建立的光合作用速率模型预测值和实测值相关系数为0.99,均方根误差为0.288,具有较好的预测效果。在一定环境条件下改变CO2浓度的输入值,得到的光合作用速率预测曲线与实际曲线变化趋势一致,该模型可以作为温室番茄开花期CO2施肥量化调控的依据。
王伟珍张漫蒋毅琼沙莎李民赞
关键词:番茄温室光合作用速率BP神经网络
温室绿熟番茄机器视觉检测方法被引量:34
2017年
针对基于可见光图像对绿色番茄进行识别过程中,光线不均造成的阴影等会影响果实的识别、枝干和叶片对果实的遮挡以及果实之间的遮挡对果实识别的影响等难题,该文对基于机器视觉的绿色番茄检测方法进行研究。首先通过快速归一化互相关函数(FNCC,fast normalized cross correlation)方法对果实的潜在区域进行检测,再通过基于直方图信息的区域分类器对果实潜在区域进行分类,判别该区域是否属于绿色果实,并对非果实区域进行滤除,估计果实区域的个数。与此同时,基于颜色分析对输入图像进行分割,并通过霍夫变换圆检测绿色果实的位置。最终对基于FNCC和霍夫变换圆检测方法的检测结果进行融合,实现对绿色番茄果实的检测。当绿色果实和红色果实同时存在时,将绿色果实检测结果与基于局部极大值法和随机圆环变换检测圆算法的红色番茄果实检测结果进行合并。算法通过有机结合纹理信息、颜色信息及番茄的形状信息,对绿色番茄果实进行了检测,解决了绿色番茄与叶子、茎秆等背景颜色接近等难题。文中共使用了70幅番茄图像,其中35幅图像作为训练集图像,35幅作为验证集图像。所提出算法对训练集图像中的83个果实的检测正确率为89.2%,对验证集图像中105个果实的检测正确率为86.7%,为番茄采摘机器人采摘红色和绿色成熟番茄奠定了基础。
李寒张漫高宇李民赞季宇寒
关键词:机器视觉图像处理霍夫变换采摘机器人
基于图像几何校正的番茄茎生长角自动测量技术被引量:1
2013年
为快速、无损地获取温室番茄植株生长形态特征,研究提出了基于图像几何校正的番茄茎生长角自动测量方法。分别应用线性模型和双线性模型对失真图像进行几何校正,结果表明:未进行几何校正之前,失真图像测量番茄茎夹角与活体番茄实际茎夹角间R2为0.50;经线性校正后二者R2为0.625;经双线性校正后R2为0.723。说明双线性校正模型对失真图像的几何校正效果优于线性校正模型。基于双线性模型图像校正结果,应用Otsu阈值分割算法对S分量番茄植株图像进行了分割,采用"中值滤波+闭-开运算"算法对分割后的二值图像进行滤波,经细化运算获取了番茄植株茎秆的最基本信息,并提取和计算了茎生长角参数,自动测量结果表明,活体植株手工测量结果与图像自动测量结果呈线性相关,R2为0.703。基于图像手工测量结果与图像自动测量结果间R2为0.985。研究可为自动测量和分析番茄生长形态参数提供支持。
孙红李民赞钱喜艳张彦娥杨玮
关键词:几何校正自动测量
CO_2增施与养分交互作用对日光温室番茄生长的影响被引量:9
2014年
以"中杂105"番茄为试验材料,在日光温室基质栽培条件下研究了CO2增施浓度和养分水平对番茄生长的影响。试验设置4个CO2水平,分别为不增施(C0)、(700±50)μmol/mol(C1)、(1 000±50)μmol/mol(C2)、(1 300±50)μmol/mol(C3);以山崎番茄配方营养液浓度1个剂量(S)为基准设3个养分水平,分别为1/2S(F1)、1S(F2)、2S(F3)。结果表明:在相同CO2处理条件下,提高养分有利于番茄茎粗、叶片SPAD值、植株干、鲜质量和第一穗果质量的增加,并使开花日期提前;在相同养分处理条件下,增施CO2可以显著增加番茄的茎粗、叶片SPAD值、植株干、鲜质量和第一穗果质量,显著降低第一花序节位,并使开花日期提前;增施(1 000±50)μmol/mol和(1 300±50)μmol/mol的CO2可以显著提高叶片中氮含量。中低养分条件下,增施(1 000±50)μmol/mol CO2即可使番茄第一花序节位降低1.0个节位、开花日期提早5~8 d,还使第一穗果质量显著高于对照。高养分条件下,增施(1 300±50)μmol/mol CO2的处理番茄第一花序节位最低,比对照(C0F3)降低1.7个节位,开花日期最早,比对照提前10 d,第一穗果质量最大,比对照高出24.15%。番茄的第一花序节位、开花日期和第一穗果质量对CO2响应的程度依赖于养分水平,高养分使这些指标对CO2响应的程度提高。综合各项生长指标,C3F3处理番茄茎粗最大、第一花序节位最低、开花最早,是最优水平组合。
王红玉曲英华周士力熊珺
关键词:日光温室养分叶片氮含量
温室黄瓜叶片近红外图像消噪算法与含氮量快速检测被引量:6
2013年
在温室基质栽培条件下,研究了温室黄瓜叶片近红外图像的消噪算法以及叶片氮素含量非线性预测。用普通CCD相机加滤光片采集不同生长时期水果型小黄瓜Deitastar的叶片图像,利用小波变换对黄瓜近红外图像进行小波消噪处理,再采用基于邓氏关联度的图像边缘检测法对图像进行分割,得到信噪比较好的目标图像,之后通过计算灰度值得到黄瓜叶片的植被指数。对获得的各种植被指数与黄瓜叶片氮含量之间进行相关分析后得到CNDVI与氮素含量相关系数最高达0.67,同时GNDVI、NDGI、NDVI与氮素相关性显著且相关系数均高于0.50。采用最小二乘支持向量机算法(LS-SVM)对植被指数同黄瓜叶片含氮量进行拟合,拟合模型的决定系数R2为0.825,验证R2为0.728,达到了较为理想的预测精度。
杨玮李民赞孙红郑立华
关键词:温室黄瓜叶片图像处理小波消噪含氮量
Universality of an improved photosynthesis prediction model based on PSO-SVM at all growth stages of tomato被引量:2
2017年
CO_(2)concentration is an environmental factor affecting photosynthesis and consequently the yield and quality of tomatoes.In this study,a photosynthesis prediction model for the entire growth stage of tomatoes was constructed to elevate CO_(2)level on the basis of crop requirements and to evaluate the effect of CO_(2)elevation on leaf photosynthesis.The effect of CO_(2)enrichment on tomato photosynthesis was investigated using two CO_(2)enrichment treatments at the entire growth stage.A wireless sensor network-based environmental monitoring system was used for the real-time monitoring of environmental factors,and the LI-6400XT portable photosynthesis system was used to measure the net photosynthetic rate of tomato leaf.As input variables for the model,environmental factors were uniformly preprocessed using independent component analysis.Moreover,the photosynthesis prediction model for the entire growth stage was established on the basis of the support vector machine(SVM)model.Improved particle swarm optimization(PSO)was also used to search for the best parameters c and g of SVM.Furthermore,the relationship between CO_(2)concentration and photosynthetic rate under varying light intensities was predicted using the established model,which can determine CO_(2)saturation points at the various growth stages.The determination coefficients between the simulated and observed data sets for the three growth stages were 0.96,0.96,and 0.94 with the improved PSO-SVM and 0.89,0.87,and 0.86 with the original PSO-SVM.The results indicate that the improved PSO-SVM exhibits a high prediction accuracy.The study provides a basis for the precise regulation of CO_(2)enrichment in greenhouses.
Li TingJi YuhanZhang ManSha ShaLi Minzan
关键词:PHOTOSYNTHESISGREENHOUSETOMATO
Management of CO_(2) in a tomato greenhouse using WSN and BPNN techniques被引量:7
2015年
Rational management of CO_(2) can improve the net photosynthetic rate of plants,thereby improving crop yield and quality.In order to precisely manage CO_(2) in a greenhouse,a wireless sensor network(WSN)system was developed to monitor greenhouse environmental parameters in real time,including air temperature,humidity,CO_(2) concentration,soil temperature,soil moisture,and light intensity.The WSN system includes several sensor nodes,a gateway node,and remote management software.The sensor nodes can collect 0-5 V and 4-20 mA analog signals and universal asynchronous receiver/transmitter(UART)data.The gateway node can process and transmit the data and commands between sensor nodes and remote management software.The remote management software provides a friendly interface between user and machine.Users can inquire about real-time data,and set the parameters of the WSN.The photosynthetic rate of tomato plants were studied in the flowering stage.A LI-6400XT portable photosynthesis analyzer was used to measure the photosynthetic rates of the tomato plants,and the environmental parameters of leaves were controlled according to the presetting rule.The photosynthetic rate prediction model of a single leaf was established based on a back propagation neural network(BPNN).The environmental parameters were used as input neurons after being processed by principal component analysis(PCA),and the photosynthetic rate was taken as the output neuron.The performance of the prediction model was evaluated,and the results showed that the correlation coefficient between the simulated and observed data sets was 0.9899,and root-mean-square error(RMSE)was 1.4686.Furthermore,when different CO_(2) concentrations were selected as the input to predict the photosynthetic rate,the simulated and observed data showed the same trend.According to the above analysis,it was concluded that the model can be used for quantitative regulation of CO_(2) for tomato plants in greenhouses.
Li TingZhang ManJi YuhanSha ShaJiang YiqiongLi Minzan
关键词:WSN
共3页<123>
聚类工具0