The aims of this paper are to discuss the extinction and positivity for the solution of the initial boundary value problem and Cauchy problem of ut = div([↓△u^m|p-2↓△u^m). It is proved that the weak solution will be extinct for 1 〈 p ≤ 1 + 1/m and will be positive for p 〉 1 + 1/m for large t, where m 〉 0.
Hong Jun YUAN Song Zhe LIAN Chun Ling CAO Wen Jie GAO Xiao Jing XU
This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.