您的位置: 专家智库 > >

国家自然科学基金(s10771103)

作品数:3 被引量:3H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 1篇THEORE...
  • 1篇BIRCH
  • 1篇CHEN
  • 1篇COMPLE...
  • 1篇CONJEC...
  • 1篇DENSIT...
  • 1篇DISTIN...
  • 1篇FORM
  • 1篇P
  • 1篇AN
  • 1篇IZATIO...
  • 1篇COVERI...
  • 1篇RAL
  • 1篇RESIDU...
  • 1篇POWERS
  • 1篇PRIMES
  • 1篇EXPONE...
  • 1篇INTEGE...

传媒

  • 2篇Chines...
  • 1篇Acta M...

年份

  • 1篇2013
  • 1篇2011
  • 1篇2010
3 条 记 录,以下是 1-3
排序方式:
A Note on the Completeness of an Exponential Type Sequence
2011年
For any given coprime integers p and q greater than 1, in 1959, B proved that all sufficiently large integers can be expressed as a sum of pairwise terms of the form p^aq^b. As Davenport observed, Birch's proof can be modified that the exponent b can be bounded in terms of p and q. In 2000, N. Hegyvari effective version of this bound. The author improves this bound.
Jinhui FANG
Chen's Conjecture and Its Generalization被引量:1
2013年
Let l1,l2,…,lg be even integers and x be a sufficiently large number.In this paper,the authors prove that the number of positive odd integers k≤x such that(k+l1)2,(k+l2)2,…,(k+lg)2 can not be expressed as 2n+pαis at least c(g)x,where p is an odd prime and the constant c(g)depends only on g.
Xuegong SUNLixia DAI
关键词:PRIMES
On the Density of Integers of the Form 2~k + p in Arithmetic Progressions被引量:2
2010年
Consider all the arithmetic progressions of odd numbers, no term of which is of the form 2^k + p, where k is a positive integer and p is an odd prime. ErdSs ever asked whether all these progressions can be obtained from covering congruences. In this paper, we characterize all arithmetic progressions in which there are positive proportion natural numbers that can be expressed in the form 2^k + p, and give a quantitative form of Romanoff's theorem on arithmetic progressions. As a corollary, we prove that the answer to the above Erdos problem is affirmative.
Xue Gong SUN
共1页<1>
聚类工具0