A needle-like Eu2+ and Dy3+ co-doped BaAI204 long-lasting phosphor was synthesized via a hydrothermal-homogeneous pre- cipitation method assisted by cetyl trimethyl ammonium bromide (CTAB) as a template. The crystal structure, morphology and opti- cal properties of the composites were characterized. XRD results showed that the single-phase BaA1204 was formed at 900 ℃ in an active carbon atmosphere, which was much lower than that prepared by traditional solid-state reaction method. Scanning electron mi- croscopy (SEM) and transmission electron microscopy (TEM) observation revealed that the precursor had well-dispersed distribution and showed needle-like morphology with the average diameter of about 100 nm and the length up to 1 μm. The final product, BaAI2Oa:Eu〉,Dy3+ phosphor, inherited the needle-like shape from precursor via adding the surfactant CTAB. After irradiation by ul- traviolet radiation with 355 nm for 5 rain, the phosphors emitted bluish green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion. Both the photoluminescence spectra and luminance decay revealed that the phosphor had efficient lumi- nescent and long-lasting properties.
An efficient and convenient one-step process was developed for synthesizing new effective red luminous materials through ordered mesoporous γ-alumina assembling with Eu3+. Employing P123 as a structure-directing agent and hydrochloric acid, citric acid as pH adjustor, ordered mesoporous γ-alumina was fabricated by simple sol-gel method. The pore structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherms and transmission electron microscopy (TEM). The as-synthesized γ-aluminas had narrow pore-size distribution (5–7 nm), large surface area (246 m2/g) and high thermal stability (750–1000 oC). The luminous property of materials was characterized by Photoluminescence (PL) spectra. The γ-Al2O3:Eu3+ materials had efficient luminescence, and the emission strength was related to the content of Eu3+.
A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 ℃ and to be single-phase SrA1204 at 1100 ℃. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about l-2μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu^2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.
Y2O2S:Eu3+,Mg2+,Ti4+ nanorods were prepared by a solvothermal procedure.Rod-like Y(OH)3 was firstly synthesized by hydrothermal method to serve as the precursor.Y2O2S:Eu3+,Mg2+,Ti4+ powders were obtained by calcinating the precursor at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ phosphor with diameters of 30–50 nm and lengths up to 200–400 nm inherited the rod-like shape from the precursor after calcined at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ nanorods showed hexagonal pure phase,good dispersion and exhibite...