We present a time-series BV CCD photometry for an EB-type eclipsing binary NSVS 1908107, a member of the young open cluster NGC 869. The photometric solution was obtained by using the 2003 version of the Wilson-Devinney code. It reveals that the system is a semi-detached binary with the secondary component filling its Roche lobe. The mass ratio was determined to be 0.059±0.001. With the physical parameters of the cluster, the masses, radii and luminosities of the two components of NSVS 1908107 are estimated to be M1 = 10.34±2.29 M⊙, R1 = 4.65re±0.34 Rspectivel⊙, L1 = 8076 y. The results s±371 L = 2.40 how tha⊙and M2 = 0.61 t the secondary co±0.13M⊙, R2±0.17 R⊙, L2 = 1054±48 L⊙mponent could be a giant or subgiant star with the outer envelope being stripped.
Effects of an ultra-strong magnetic field on electron capture rates for 55Co are analyzed in the nuclear shell model and under the Landau energy levels quantized approximation in the ultra-strong magnetic field, and the electron capture rates on 10 abundant iron group nuclei at the surface of a magnetar are given. The results show that electron capture rates on 55Co are increased greatly in the ultra-strong magnetic field, by about 3 orders of magnitude generally. These conclusions play an important role in future study of the evolution of magnetars.
When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, ther- mal energy will be released and heat the crust, increasing crust temperature and chang- ing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evo- lution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theo- retical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is -0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts.
The distribution of abundance for iron-peak elements in dwarf spheroidal galaxies (dSphs) is important for galaxy evolution and supernova (SN) nucleosynthesis. Nowadays, manganese (Mn) is one of the most observed iron-peak elements in local dSphs. Studies of its distributions allow us to derive and understand the evolution history of these dSphs. We improve a phenomenological model by a two-curve model including a new initial condition, that includes detailed calculations of SN explosion rates and yields. We compare the results with the observed Mn distribution data for three dSphs: Fornax, Sculpture and Sextans. We find that the model can describe the observed Fe and Mn distributions well simultaneously for the three dSphs. The results also indicate that the initial conditions should be determined by the low metallicity sam- ples in the beginning time of the galaxies and the previous assumption of metellicity-dependant Mn yield of SNIa is not needed when a wide mass range of core-collapse SNe is included. Our method is applicable to the chemical evolution of other iron-peak elements in dSphs and can be modified to provide more detailed processes for the evolution of dSphs.