The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.
The interaction of a screw dislocation in the interphase layer with the circular inhomogeneity and matrix was dealt with . An efficient method for multiply connected regions was developed by combining the sectionally subholomorphic function theory, Schwatz symmetric principle and Cauchy integral technique. The Hilbert problem of the complex potentials for three material regions was reduced to a functional equation in the complex potential of the interphase layer, resulting in an explicit series solution . By using the present solution the interaction energy and force acting dislocation were evaluated and discussed.