Titanium dioxide coated on activated carbon(AC) with Fe ions doping(Fe-TiO2/AC) composite was prepared by an improved sol-gel method.The photocatalytic activities were tested by photocatalytic degradation of reactive brilliant red K2G in solution.The results show that in comparison with the agglomeration of pure TiO2,the TiO2 nanoparticles are well dispersed in the AC matrix,of which sizes are decreased with Fe ions doping.Additionally,the iron species on TiO2 of composite are Fe2O3 and FeO,which do not affect the crystalline structures of TiO2 nanoparticles.The AC matrix and iron doping content influence the fluorescence intensity of composite due to their effects on recombination probability of hole-electron pairs.Compared with TiO2,0.3% Fe-TiO2,TiO2/AC,0.5% Fe-TiO2/AC and 0.1% Fe-TiO2/AC,the 0.3% Fe-TiO2/AC shows the highest photoactivity with the complete mineralization of K2G for finite time due to the optimum Fe ions content and AC matrix.Furthermore,the kinetic constant(k=0.0229 min-1) of 0.3% Fe-TiO2/AC composite is more than the sum of both TiO2/AC(0.0154 min-1) and 0.3% Fe-TiO2(0.0057 min-1) because coexistence of the AC and Fe ions has an enlarging effect on improving the photoactivity of TiO2.
LI YouJi,LI Jing,MA MingYuan,OUYANG YuZhu & YAN WenBin College of Chemistry and Chemical Engineering,Jishou University,Jishou 416000,China
TiO2-coated carbon felt(TCF)composite catalysts have been prepared via a supercritical treatment of titanium tetraisopropoxide(TTIP)as the precursor.The physical properties of the catalysts were characterized by means of thermogravimetric and differential thermal analysis(TG–DTA),X-ray diffraction(XRD),fluorescence spectroscopy,scanning electron microscopy (SEM),and BET surface areas techniques.The photocatalytic activities of the materials were evaluated using the degradation of Congo red(CR)as a probe reaction.All the composites showed much higher photocatalytic activity than commercial P25 due to significant synergistic effects.Reused TCF retained high photocatalytic activity for degradation of CR.The photocatalytic efficiency in CR degradation was found to be strongly dependent on the TiO2-coating ratio and calcination temperature.A possible mechanism for the enhanced reactivity involves shuttling of electrons from TiO2 particles to the carbon felt(CF)as a result of an optimal arrangement in TCF that stabilizes charge separation and reduces charge recombination.In addition to the significant synergistic effects,the abundant spaces between adjacent carbon fibers allow UV light to penetrate into the felt-like photocatalyst to a considerable depth,so that a three-dimensional environment is available for the photocatalytic reaction.
Fe-doped TiO 2 coated on activated carbon (Fe-TiO 2 /AC, FTA) composites were prepared by an improved sol-gel method and characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and BET surface area analysis. Obtained FTA composites were applied to the continuous treatment of dye wastewater in a dynamic reactor. The effects of Fe ion content, catalyst content, UV-lamp power and flowrate of the continuous treatment of dye wastewater on degradation efficiency were analyzed to determine the optimum operating conditions of dye wastewater degradation. Continuous photocatalytic experiments provided interesting results that FTA had a high chemical oxygen demand (COD) removal rate compared with TiO 2 , Fe doped TiO 2 (FT) and TiO 2 coated on activated carbon (TA). In particular, when using the FTA catalyst with a Fe ion content of 0.33%, the kinetic content (k = 0.0376) of COD removal was more than the sum of both TA (0.0205) and 0.33% FT (0.0166). FTA showed a high photoactivity because of a synergistic effect between Fe ions and AC on TiO 2 , which is higher than the individual effects of AC or Fe ions on TiO 2 . Additionally, for the photocatalytic degradation of dye wastewater, the optimum Fe ion content, catalyst content, UV-lamp power and flowrate were 0.33%, 6 g/L, 60 W (two lamps) and 300 mL/hr, respectively. An investigation of catalyst reuse revealed that the 0.33% FTA showed almost no deactivation in photocatalytic degradation of naturally treated wastewater.
Youji Li Jun Chen Jianben Liu Mingyuan Ma Wei Chen