X-ray photoelectron spectroscopy(XPS)was adopted to elucidate sorption mechanism of phenol and p-nitrophenol onto a weakly anion exchanger D301.The distribution of specific forms of tertiary amino group on D301 was obtained and effect of free tertiary amino group on phenol sorption onto D301 was discussed. The result indicated that the percent of the protonated tertiary amine group on polymeric matrix was much lower than the reference compound N,N-dimethylbenzylamine at an identical pH value in solution due to the much lower activity degree of hydrogen ion in inner resin phase than in the external solution. Less free amino group on D301 results in less sorption capacity of phenol and p-nitrophenol in an acidic solution. Under the experimental conditions both phenol sorption onto D301 can be explained as solid extraction and the distribution coefficient varies linearly with the content of free amino group on D301.
LI XiaotaoPan BingcaiPan BingjunZhang WeiminMeng FanweiChen JinlongZhang Quanxing
In the present study a novel technique was proposed to prepare a polymer-supported hydrated ferric oxide (D201-HFO) based on Donnan membrane effect by using a strongly basic anion exchanger D201 as the host material and FeCl3-HCl-NaCl solution as the reaction environment. D201-HFO was found to exhibit higher capacity for arsenic removal than a commercial sorbent Purolite ArsenX. Furthermore, it presents favorable adsorption selectivity for arsenic removal from aqueous solution, as well as satis- factory kinetics. Fixed-bed column experiments showed that arsenic sorption on D201-HFO could re- sult in concentration of this toxic metalloid element below 10 μg/L, which was the new maximum con- centration limit set recently by the European Commission and imposed by the US EPA and China. Also, the spent D201-HFO is amenable to efficient regeneration by NaOH-NaCl solution.
Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.
Hui QIU Lu LV Bing-cai PAN Qing-jian ZHANG Wei-ming ZHANG Quan-xing ZHANG