In the design of Hydraulic Manifold Blocks (HMB), dynamic performance of inner pipeline networks usually should be evaluated. To meet the design requirements, dynamic characteristic simulation is often needed. Based on comprehensive study on the existing simulation methods, a new method combined of Power Bond Graph(PBG) and Computational Fluid Dynamic (CFD) is proposed. In this method, flow field of typical channels inside HMB is analyzed with CFD to obtain the local resistance coefficients. Then, with these coefficients, a new sectional lumped-parameter model including kinetic friction factor is developed using PBG. A typical HMB design example is given and the comparison between the simulation and the experimental results demonstrates the feasibility and effectiveness of the proposed method.
This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.