The efficient Eu2+ -doped Ba3 Si6O12N2 green phosphors were prepared by a traditional solid state reaction method under N2 /H2 atmosphere at a temperature up to 1350 ℃ for 12h. Photoluminescence (PL) properties showed a broad emission band with a peak of 525 nm and the full width of half-emission maximums (FWHM) of 70 nm under 460 nm light irradiation. The X-ray diffraction patterns (XRD) and scanning electron microscope (SEM) images of the synthesized powder demonstrated its pure phase and excellent crystallization. Quenching concentration in this phosphor was found to be 0.3. The mechanisms of concentration quenching and redshift of emission peak with increasing concentration of Eu2+ were studied. The temperature dependence measurement of this green phosphor revealed excellent thermal quenching property compared to silicate green phosphor. It is believed that Ba3 Si6O12N2 :Eu2+ is an excellent green phosphor for UV or blue chip based white LEDs.
Monodisperse (Sr, Eu)CO3 sphere (the homogenous mixture of Sr2+ and Eu3+ carbonates) was firstly prepared, and then its surface was coated by amorphous SiO2 in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) to form (Sr, Eu)CO3@SiO2 core-shell-like precursor. The overall synthesized mechanism was investigated and proposed based on the Fourier transform infrared spec- troscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). This strategy could be applied to construct core-shell structured precursors for the preparation of alkali earth silicate phosphors.
Green emitting Eu2+-doped (Ba3_xSrx)Si6012N2 solid solutions were synthesized through solid state reaction at 1350 ℃ for 10 h under a N2/H2 atmosphere. The XRD patterns revealed that the solid solution series of (Ba3 x-ySrx)Si6Ol2N2:yEu2+ with x value ranging from 0-0.6 were established. An efficient and intense tunable green light was observed by varying the cation Sr/Ba ratio. The emission spectra exhibited an entire shift towards long wavelength with increasing ofx value, which was caused by large crystal field splitting and Stokes shift. The x value dependence of emission intensity was discovered and explained by the enhanced probability of electron from excited 4f state to 5d ground state via nonradioactive transition. Highly thermal stability and feasible color coordinates were verified. White LEDs with excellent photochromic properties were fabricated by packing GaN based blue chips and (Ba Sr)3Si6012N2:Eu2+ phosphors. All results indicated that the (Ba3_xSrx)SirO12N2:Eu2+ phosphors were confirmed to be a promising candidate for pc-white LEDs in solid state lighting.