An original design of ring-core photonic crystal fiber (RPCF) is proposed. By splicing a section of the homemade RPCF between two segments of single mode fibers (SMFs), a simple modal interferometer is presented and experimentally demonstrated. Owing to the effects of the collapsed region, the ring modes in RPCF can be effectively activated. To our knowledge, it is the first time to demonstrate the modal interferometer based on the interference between the ring modes, which is different from the previously reported interferometers based on the interference between core modes or cladding modes. The temperature and strain characteristics of the interferometers with different lengths of RPCF are investigated.
The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.