Transcription factor binding sites (TFBS) play key roles in genebior 6.8 wavelet expression and regulation. They are short sequence segments with definite structure and can be recognized by the corresponding transcription factors correctly. From the viewpoint of statistics, the candidates of TFBS should be quite different from the segments that are randomly combined together by nucleotide. This paper proposes a combined statistical model for finding over- represented short sequence segments in different kinds of data set. While the over-represented short sequence segment is described by position weight matrix, the nucleotide distribution at most sites of the segment should be far from the background nucleotide distribution. The central idea of this approach is to search for such kind of signals. This algorithm is tested on 3 data sets, including binding sites data set of cyclic AMP receptor protein in E.coli, PlantProm DB which is a non-redundant collection of proximal promoter sequences from different species, collection of the intergenic sequences of the whole genome of E.Coli. Even though the complexity of these three data sets is quite different, the results show that this model is rather general and sensible.
Understanding the cooperation-competition dynamics is a long-standing challenge in studying complex systems.Inspired by the idea of Shannon entropy, we define competition information entropy and propose an entropy evolution model. The analytic results of the model of the relation between competition gain distribution parameters and entropy, as well as the relation between entropy and time are compared with empirical results obtained in 14 real world systems. They are found to be in good agreement with each other.