A continuous-wave all-solid-state tunable Ti:sapphire laser with compact configuration is presented. The frequency-tuning range extends from 760 to 825 nm by rotating the birefringent filters. When the intracavity etalon is locked on tile oscillating frequency of the laser and the length of the resonator is scanned by the piezo- electric ceramics transducer, a maximal continuous frequency-tuning range of 15.3 GHz is realized. The obtained Ti:sapphire laser is successfully applied to scan the saturation absorption spectroscopy of D1 transitions of SrRb atoms around the wavelength of 794.97 nm.
For the surgical treatment of cardiovascular disease(CVD),there is a clear and unmet need in developing small-diameter(diameter<6 mm)vascular grafts.In our previous work,sulfated silk fibroin(SF)was successfully fabricated as a potential candidate for preparing vascular grafts due to the great cytocompatibility and hemocompatibility.However,vascular graft with single layer is difficult to adapt to the complex internal environment.In this work,polycaprolactone(PCL)and sulfated SF were used to fabricate bilayer vascular graft(BLVG)to mimic the structure of natural blood vessels.To enhance the biological activity of BLVG,nicorandil(NIC),an FDA-approved drug with multi-bioactivity,was loaded in the BLVG to fabricate NIC-loaded BLVG.The morphology,chemical composition and mechanical properties of NIC-loaded BLVG were assessed.The results showed that the bilayer structure of NIC-loaded BLVG endowed the graft with a biphasic drug release behavior.The in vitro studies indicated that NIC-loaded BLVG could significantly increase the proliferation,migration and antioxidation capability of endothelial cells(ECs).Moreover,we found that the potential biological mechanism was the activation of PI3K/AKT/eNOS signaling pathway.Overall,the results effectively demonstrated that NIC-loaded BLVG had a promising in vitro performance as a functional small-diameter vascular graft.
Zheng XingChen ZhaoChunchen ZhangYubo FanHaifeng Liu
Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies.Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure,fiber-reinforced scaffolds have the advantage to mimic the structure,mechanical and biological environment of natural soft tissues,which benefits for their regeneration and remodeling.This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics,mechanical strength and biological activities in vitro and in vivo.In general,the concept of fiber-reinforced scaffolds with adjustable microstructures,mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine.
Baoqing PeiWei WangYubo FanXiumei WangFumio WatariXiaoming Li
Quantum entangled states, especially those having particular properties, are key resources for quantum information and quantum computation. In this paper, we put forward a new scheme to produce 31 continuous-variable (CV) tripartite entanglement fields based on three optical frequency combs via cascade nonlinear processes in an optical parametric cavity, and investigate the spectral characteristics of three frequency combs. The center wavelengths of the three combs are designed as 852 nm, 780 nm (atomic transition lines), and 1550 nm (fiber communication wavelength). The positivity under partial transposition (PPT) criterion, which is sufficient and necessary, is used to evaluate the entanglement in each group of comb lines. This scheme is experimentally feasible and valuable for constructing quantum information networks in future.
Atomic spin relaxation in a vapor cell, which can be characterized by the magnetic resonance linewidth(MRL),is an important parameter that eventually determines the sensitivity of an atomic magnetometer. In this paper, we have extensively studied how the pump intensity affects the spin relaxation. The experiment is performed with a cesium vapor cell, and the influence of the pump intensity on MRL is measured at room temperature at zero-field resonance. A simple model with five atomic levels of a Λ-like configuration is discussed theoretically, which can be used to represent the experimental process approximately, and the experimental results can be explained to some extent. Both the experimental and the theoretical results show a nonlinear broadening of the MRL when the pump intensity is increasing. The work helps to understand the mechanism of pump induced atomic spin relaxation in the atomic magnetometers.