Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by γ-(2,3-epoxypropoxy) propytrimethoxysilane(KH-560). The interfacial interactions between UF microcapsules and KH-560 were studied by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectrometric analysis(XPS) of microcapsules. The surface topography of microcapsules was characterized by scanning electron microscopy(SEM). The thermal stability and mechanical properties were evaluated. FTIR and XPS results showed that there were physical and chemical combinations between the silicon coupling agent and the microcapsules surface. The thermal stability and mechanical property analysis showed that the addition of KH-560 could greatly improve the thermal stability, tensile property and elastic property. SEM results indicated that the addition of KH-560 could improve the bonding between the surface of microcapsules and resin matrix and improve the ability of self-healing.
In order to improve the healing performance and increase the service life of the polymer matrix composites, microcapsules were prepared by interracial polymerization process with urea formaldehyde resin and epoxy resin E-51 as the wall material and core material separately. The effects of core/shell mass ratio and emulsifier on the distribution, topography and encapsulation rate of microcapsules were investigated. By optimizing the conditions, microcapsules with little particle size, well dispersion and compact surface were prepared. The distribution, topography, stability and compositions of the microcapsules were characterized using Nano-2s, optical microscope, scanning electron microscopy, thermal analysis and Fourier transform infrared spectroscopy. The osmosis performance of the microcapsules was evaluated. The experimental results showed that the ratio of core/shell materials (1:1) and 1% DBS as emulsifier were optimum preparation conditions and the encapsulation rate was 62.5%. The microcapsules can be synthesized successfully with mean diameter 548.6 nm and exhibit a good chemical stability below 225 ℃. The FTIR result indicated that urea-formaldehyde resin was formed and the core materials were successfully encapsulated in urea-formaldehyde shell. Osmosis performance evaluation showed that the microcapsules were well coated and slowly osmosed.